Skip to main content
Log in

Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Dielectric engineering plays a crucial role in the process of device miniaturization. Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors (MOSFETs), considering hetero-gate-dielectric construction, dielectric materials and GaSe stacking pattern. The results show that device performance strongly depends on the dielectric constants and locations of insulators. When high-k dielectric is placed close to the drain, it behaves with a larger on-state current (Ion) of 5052 µA/µm when the channel is 5 nm. Additionally, when the channel is 5 nm and insulator is HfO2, the largest Ion is 5134 µA/µm for devices with AC stacking GaSe channel. In particular, when the gate length is 2 nm, it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used. Hence, the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jiang, Y. Wen, H. Wang, L. Yin, R. Cheng, C. Liu, L. Feng, and J. He, Recent advances in 2D materials for photodetectors, Adv. Electron. Mater. 7(7), 2001125 (2021)

    Article  Google Scholar 

  2. M. Long, P. Wang, H. Fang, and W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors, Adv. Funct. Mater. 29(19), 1803807 (2019)

    Article  Google Scholar 

  3. L. Zhang, Y. Yang, J. Chen, and L. Zhang, Photogalvanic effect induced charge and spin photocurrent in group-V monolayer systems, Front. Phys. 18(6), 62301 (2023)

    Article  ADS  Google Scholar 

  4. X. Li, P. Yuan, M. He, L. Li, J. Du, W. Xiong, C. Xia, and L. Kou, Optoelectronic properties and applications of two-dimensional layered semiconductor van der Waals heterostructures: Perspective from theory, J. Phys.: Condens. Matter 35(4), 043001 (2023)

    ADS  Google Scholar 

  5. M. Bikerouin, O. Chdil, and M. Balli, Solar cells based on 2D Janus group-III chalcogenide van der Waals heterostructures, Nanoscale 15(15), 7126 (2023)

    Article  Google Scholar 

  6. H. Li, L. Lin, L. Yao, F. Wu, D. Wei, G. Liu, Z. Huang, S. Chen, J. Li, and G. Chen, High-efficiency Sb2(S, Se)3 solar cells with new hole transport layer-free back architecture via 2D titanium-carbide Mxene, Adv. Funct. Mater. 32(10), 2110335 (2022)

    Article  Google Scholar 

  7. V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, and M. C. Hersam, Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide, Nature 554(7693), 500 (2018)

    Article  ADS  Google Scholar 

  8. L. Yin, R. Cheng, Z. Wang, F. Wang, M. G. Sendeku, Y. Wen, X. Zhan, and J. He, Two-dimensional unipolar memristors with logic and memory functions, Nano Lett. 20(6), 4144 (2020)

    Article  ADS  Google Scholar 

  9. W. Niu, G. Ding, Z. Jia, X. Ma, J. Zhao, K. Zhou, S. Han, C. Kuo, and Y. Zhou, Recent advances in memristors based on two-dimensional ferroelectric materials, Front. Phys. 19(1), 13402 (2024)

    Article  ADS  Google Scholar 

  10. L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, and T. Mueller, Ultrafast machine vision with 2D material neural network image sensors, Nature 579(7797), 62 (2020)

    Article  ADS  Google Scholar 

  11. W. Huh, D. Lee, and C. H. Lee, Memristors based on 2D materials as an artificial synapse for neuromorphic electronics, Adv. Mater. 32(51), 2002092 (2020)

    Article  Google Scholar 

  12. D. Xiang, T. Liu, X. Zhang, P. Zhou, and W. Chen, Dielectric engineered two-dimensional neuromorphic transistors, Nano Lett. 21(8), 3557 (2021)

    Article  ADS  Google Scholar 

  13. J. H. Ju, S. Seo, S. Baek, D. Lee, S. Lee, T. Lee, B. Kim, J. J. Lee, J. Koo, H. Choo, S. Lee, and J. H. Park, Two-dimensional MXene synapse for brain-inspired neuromorphic computing, Small 17(34), 2102595 (2021)

    Article  Google Scholar 

  14. R. K. A. Bennett and Y. Yoon, Using anisotropic insulators to engineer the electrostatics of conventional and tunnel field-effect transistors, IEEE Trans. Electron Dev. 68(2), 865 (2021)

    Article  ADS  Google Scholar 

  15. C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin, Y. Zhang, J. Wang, X. Gao, C. Zhang, X. Zhou, L. Zheng, H. Liu, K. Jiang, F. Ding, and H. Peng, 2D fin field-effect transistors integrated with epitaxial high-k gate oxide, Nature 616(7955), 66 (2023)

    Article  ADS  Google Scholar 

  16. W. Zhou, S. Zhang, S. Guo, H. Qu, B. Cai, X. Chen, and H. Zeng, High-performance monolayer Na3Sb shrinking transistors: a DFT-NEGF study, Nanoscale 12(36), 18931 (2020)

    Article  Google Scholar 

  17. R. K. A. Bennett and Y. Yoon, Exploiting fringing fields created by high-k gate insulators to enhance the performance of ultrascaled 2D-material-based transistors, IEEE Trans. Electron Dev. 68(9), 4618 (2021)

    Article  ADS  Google Scholar 

  18. W. Y. Choi and W. Lee, Hetero-gate-dielectric tunneling field-effect transistors, IEEE Trans. Electron Dev. 57(9), 2317 (2010)

    Article  ADS  Google Scholar 

  19. J. Madan and R. Chaujar, Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: A solution for suppressed ambipolarity and enhanced ON state behavior, Appl. Phys. A 122(11), 973 (2016)

    Article  ADS  Google Scholar 

  20. X. P. Li, P. Z. Yuan, L. Li, M. J. He, J. B. Li, and C. X. Xia, Sub-5-nm monolayer GaSe MOSFET with ultralow subthreshold swing and high on-state current: Dielectric layer effects, Phys. Rev. Appl. 18(4), 044012 (2022)

    Article  ADS  Google Scholar 

  21. A. Kuc, T. Cusati, E. Dib, A. F. Oliveira, A. Fortunelli, G. Iannaccone, T. Heine, and G. Fiori, High-performance 2D p-type transistors based on GaSe layers: An ab initio study, Adv. Electron. Mater. 3(2), 1600399 (2017)

    Article  Google Scholar 

  22. Y. Cui, L. Peng, L. Sun, Q. Qian, and Y. Huang, Two-dimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range, J. Mater. Chem. A 6(45), 22768 (2018)

    Article  Google Scholar 

  23. D. J. Late, B. Liu, J. Luo, A. Yan, H. S. Matte, M. Grayson, C. N. Rao, and V. P. Dravid, GaS and GaSe ultrathin layer transistors, Adv. Mater. 24(26), 3549 (2012)

    Article  Google Scholar 

  24. B. Chitara and A. Ya’akobovitz, Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets, Nanoscale 10(27), 13022 (2018)

    Article  Google Scholar 

  25. M. W. Chen, H. Kim, D. Ovchinnikov, A. Kuc, T. Heine, O. Renault, and A. Kis, Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion, npj 2D Mater. Appl. 2(1), 2 (2018)

    Article  Google Scholar 

  26. C. Si, Z. Lin, J. Zhou, and Z. Sun, Controllable Schottky barrier in GaSe/graphene heterostructure: The role of interface dipole, 2D Mater. 4(1), 015027 (2016)

    Article  Google Scholar 

  27. D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, and V. P. Dravid, Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates, Adv. Funct. Mater. 22(9), 1894 (2012)

    Article  Google Scholar 

  28. P. A. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, Synthesis of few-layer GaSe nanosheets for high performance photodetectors, ACS Nano 6(7), 5988 (2012)

    Article  Google Scholar 

  29. J. Palepu, A. Tiwari, P. Sahatiya, S. Kundu, and S. Kanungo, Effects of artificial stacking configurations and biaxial strain on the structural, electronic and transport properties of bilayer GaSe–A first principle study, Mater. Sci. Semicond. Process. 137, 106236 (2022)

    Article  Google Scholar 

  30. L. Li, P. Z. Yuan, T. Liu, Z. A. Ma, C. X. Xia, and X. P. Li, Self-powered broadband photodetector based on a monolayer InSe p–i–n homojunction, Phys. Rev. Appl. 19(1), 014039 (2023)

    Article  ADS  Google Scholar 

  31. X. Li, P. Yuan, L. Li, T. Liu, C. Shen, Y. Jiang, X. Song, and C. Xia, Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment, Front. Phys. 18(1), 13305 (2023)

    Article  ADS  Google Scholar 

  32. X. Li, Z. Wang, L. Li, P. Yuan, X. Tang, C. Shen, Y. Jiang, X. Song, and C. Xia, Orientation-dependent transport and photo detection in WSe2/MoSe2 planar heterojunction transistors, IEEE Trans. Electron Dev. 20(6), 064050 (2023)

    Google Scholar 

  33. X. Li, T. Li, P. Yuan, L. Li, C. Shen, Y. Jiang, X. Song, and C. Xia, Ultrahigh current and ultralow power dissipation of Janus monolayer IIIA-VIA Ga2XY MOSFETs, Appl. Surf. Sci. 630, 157436 (2023)

    Article  Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  35. Z. Q. Fan, X. W. Jiang, J. W. Luo, L. Y. Jiao, R. Huang, S. S. Li, and L. W. Wang, In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides, Phys. Rev. B 96(16), 165402 (2017)

    Article  ADS  Google Scholar 

  36. W. Zhou, H. Qu, S. Guo, B. Cai, H. Chen, Z. Wu, H. Zeng, and S. Zhang, Dependence of tunneling mechanism on two-dimensional material parameters: A high-throughput study, Phys. Rev. Appl. 17(6), 064053 (2022)

    Article  ADS  Google Scholar 

  37. W. K. Zhao, D. Q. Zou, Z. P. Sun, Y. Q. Xu, G. M. Ji, X. T. Li, and C. L. Yang, High-performance monolayer SiMe-graphene n-type field-effect transistors with low supply voltage and high on-state current in sub-5 nm gate length, Adv. Electron. Mater. 8(7), 2101359 (2022)

    Article  Google Scholar 

  38. Y. Yin, C. Shao, H. Guo, J. Robertson, Z. Zhang, and Y. Guo, Negative differential resistance effect in “cold” metal heterostructure diodes, IEEE Electron Device Lett. 43(3), 498 (2022)

    Article  ADS  Google Scholar 

  39. L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang, Z. Li, L. Feng, L. Liao, X. Duan, and Y. Liu, Doping-free complementary WSe2 circuit via van der Waals metal integration, Nat. Commun. 11(1), 1866 (2020)

    Article  ADS  Google Scholar 

  40. R. Duflou, G. Pourtois, M. Houssa, and A. Afzalian, Fundamentals of low-resistive 2D-semiconductor metal contacts: An ab-initio NEGF study, npj 2D Mater. Appl. 7(1), 38 (2023)

    Article  Google Scholar 

  41. H. Mamori, A. El Kenz, A. Benyoussef, A. Taleb, A. Ennaoui, K. El Maalam, M. Hamedoun, and O. Mounkachi, Dynamic stability in phosphorene bilayer with different stacking orders: A first principle study, Mater. Sci. Semicond. Process. 140, 106341 (2022)

    Article  Google Scholar 

  42. P. Luo, C. Liu, J. Lin, X. Duan, W. Zhang, C. Ma, Y. Lv, X. Zou, Y. Liu, F. Schwierz, W. Qin, L. Liao, J. He, and X. Liu, Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation, Nat. Electron. 5(12), 849 (2022)

    Article  Google Scholar 

  43. Q. Li, S. Fang, S. Liu, L. Xu, L. Xu, C. Yang, J. Yang, B. Shi, J. Ma, J. Yang, R. Quhe, and J. Lu, Performance limit of ultrathin GaAs transistors, ACS Appl. Mater. Interfaces 14(20), 23597 (2022)

    Article  Google Scholar 

  44. H. Li, Q. Wang, F. Liu, and J. Lu, Lifting on-state currents for GeS-based tunneling field-effect transistors with electrode optimization, Appl. Surf. Sci. 602, 154297 (2022)

    Article  Google Scholar 

  45. W. Zhou, S. Guo, H. Zeng, and S. Zhang, High-performance monolayer BeN2 transistors with ultrahigh on-state current: A DFT coupled with NEGF study, IEEE Trans. Electron Dev. 69(8), 4501 (2022)

    Article  ADS  Google Scholar 

  46. J. Lyu, S. Song, and J. Gong, Bi2O2Se/Xene for steep-slope transistors, ACS Appl. Electron. Mater. 5(8), 4248 (2023)

    Article  Google Scholar 

  47. Y. Ke, W. Li, G. Yin, L. Zhang, and R. Quhe, Quantum transport simulations of a proposed logic-in-memory device based on a bipolar magnetic semiconductor, Phys. Rev. Appl. 20(1), 014050 (2023)

    Article  ADS  Google Scholar 

  48. P. Sang, Q. Wang, W. Wei, L. Tai, X. Zhan, Y. Li, and J. Chen, Two-dimensional silicon atomic layer field-effect transistors: Electronic property, metal-semiconductor contact, and device performance, IEEE Trans. Electron Dev. 69(4), 2173 (2022)

    Article  ADS  Google Scholar 

  49. H. V. Phuc, N. N. Hieu, B. D. Hoi, and C. V. Nguyen, Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer–GaSe van der Waals heterostructure, Phys. Chem. Chem. Phys. 20(26), 17899 (2018)

    Article  Google Scholar 

  50. J. Grzonka, M. S. Claro, A. Molina-Sánchez, S. Sade-wasser, and P. J. Ferreira, Novel polymorph of GaSe, Adv. Funct. Mater. 31(48), 2104965 (2021)

    Article  Google Scholar 

  51. Z. Ben Aziza, V. Zólyomi, H. Henck, D. Pierucci, M. G. Silly, J. Avila, S. J. Magorrian, J. Chaste, C. Chen, M. Yoon, K. Xiao, F. Sirotti, M. C. Asensio, E. Lhuillier, M. Eddrief, V. I. Fal’ko, and A. Ouerghi, Valence band inversion and spin–orbit effects in the electronic structure of monolayer GaSe, Phys. Rev. B 98(11), 115405 (2018)

    Article  ADS  Google Scholar 

  52. The International Technology Roadmap for Semiconductors (ITRS), www.semiconductors.org/resources/2013

  53. H. Xie, X. Cai, K. Cui, X. Yi, J. Lu, and Z. Fan, High-performance monolayer or bilayer SiC short channel transistors with metallic 1T-phase MoS2 contact, Phys. Lett. A 436, 128070 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants Nos. 12374070 and 12074103), the Foundation for University Key Young Teacher of Henan (Grant No. 2023GGJS035), Henan Province Postdoctoral Project Launch Funding (Grant No. 5201029430112), and the Science and Technology Program of Henan (Grant No. 232102230080). The calculations are also supported by the High Performance Computing Center of Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congxin Xia.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tang, X., Wang, Z. et al. Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current. Front. Phys. 19, 53202 (2024). https://doi.org/10.1007/s11467-023-1390-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1390-3

Keywords

Navigation