Skip to main content
Log in

Room-temperature ferroelectricity in van der Waals SnP2S6

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) ferroelectric materials, which possess electrically switchable spontaneous polarization and can be easily integrated with semiconductor technologies, is of utmost importance in the advancement of high-integration low-power nanoelectronics. Despite the experimental discovery of certain 2D ferroelectric materials such as CuInP2S6 and In2Se3, achieving stable ferroelectricity at room temperature in these materials continues to present a significant challenge. Herein, stable ferroelectric order at room temperature in the 2D limit is demonstrated in van der Waals SnP2S6 atom layers, which can be fabricated via mechanical exfoliation of bulk SnP2S6 crystals. Switchable polarization is observed in thin SnP2S6 of ∼7 nm. Importantly, a van der Waals ferroelectric field-effect transistor (Fe-FET) with ferroelectric SnP2S6 as top-gate insulator and p-type WTe0.6Se1.4 as the channel was designed and fabricated successfully, which exhibits a clear clockwise hysteresis loop in transfer characteristics, demonstrating ferroelectric properties of SnP2S6 atomic layers. In addition, a multilayer graphene/SnP2S6/multilayer graphene van der Waals vertical heterostructure phototransistor was also fabricated successfully, exhibiting improved optoelectronic performances with a responsivity (R) of 2.9 A/W and a detectivity (D) of 1.4 × 1012 Jones. Our results show that SnP2S6 is a promising 2D ferroelectric material for ferroelectric-integrated low-power 2D devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Wenbiao Niu, Z. Jia, X. Q. Ma, J. Y. Zhao, K. Zhou, S. T. Han, C. C. Kuo, and Y. Zhou, Recent advances in memristors based on two-dimensional ferroelectric materials, Front. Phys. 19(1), 13402 (2024)

    Article  ADS  Google Scholar 

  2. T. Sano, Y. Nishio, Y. Hamada, H. Takahashi, T. Usuki, and K. Shibata, Design of conjugated molecular materials for optoelectronics, J. Mater. Chem. 10(1), 157 (2000)

    Article  Google Scholar 

  3. I. B. Bersuker, I. Y. Ogurtsov, and Y. V. Shaparev, Temperature dependence of the mean dipole moment of symmetrical molecular systems, Theor. Exp. Chem. 9(4), 351 (1975)

    Article  Google Scholar 

  4. P. Li, Z. M. Gao, X. S. Huang, L. F. Wang, W. F. Zhang, and H. Z. Guo, Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction, Front. Phys. 13, 136803 (2018)

    Article  ADS  Google Scholar 

  5. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Magnetism in hafnium dioxide, Phys. Rev. B 72(2), 024450 (2005)

    Article  ADS  Google Scholar 

  6. D. E. Aspnes, Electric field effects on the dielectric constant of solids, Phys. Rev. 153(3), 972 (1967)

    Article  ADS  Google Scholar 

  7. D. G. Schlom, L. Q. Chen, C. B. Eom, K. M. Rabe, S. K. Streiffer, and J. M. Triscone, Strain tuning of ferroelectric thin films, Annu. Rev. Mater. Res. 37(1), 589 (2007)

    Article  ADS  Google Scholar 

  8. M. H. Wu, Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities, ACS Nano 15(6), 9229 (2021)

    Article  Google Scholar 

  9. Y. Liu, Y. Huang, and X. F. Duan, Van der Waals integration before and beyond two-dimensional materials, Nature 567(7748), 323 (2019)

    Article  ADS  Google Scholar 

  10. M. H. Wu, J. D. Burton, E. Y. Tsymbal, X. C. Zeng, and P. Jena, Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials, Phys. Rev. B 87(8), 081406 (2013)

    Article  ADS  Google Scholar 

  11. S. G. Yuan, X. Luo, H. L. Chan, C. C. Xiao, Y. W. Dai, M. H. Xie, and J. H. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10(1), 1775 (2019)

    Article  ADS  Google Scholar 

  12. S. N. Shirodkar and U. V. Waghmare, Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2, Phys. Rev. Lett. 112(15), 157601 (2014)

    Article  ADS  Google Scholar 

  13. C. X. Zheng, L. Yu, L. Zhu, J. L. Collins, D. Kim, Y. D. Lou, C. Xu, M. Li, Z. Wei, Y. P. Zhang, M. T. Edmonds, S. Q. Li, J. Seidel, Y. Zhu, J. Z. Liu, W. X. Tang, and M. S. Fuhrer, Room temperature in-plane ferroelectricity in van der Waals In2Se3, Sci. Adv. 4(7), eaar7720 (2018)

    Article  ADS  Google Scholar 

  14. W. J. Ding, J. B. Zhu, Z. Wang, Y. F. Gao, D. Xiao, Y. Gu, Z. Y. Zhang, and W. G. Zhu, Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2−VI3 van der Waals materials, Nat. Commun. 8(1), 14956 (2017)

    Article  ADS  Google Scholar 

  15. F. C. Liu, L. You, K. L. Seyler, X. B. Li, P. Yu, J. H. Lin, X. W. Wang, J. D. Zhou, H. Wang, H. Y. He, S. T. Pantelides, W. Zhou, P. Sharma, X. D. Xu, P. M. Ajayan, J. L. Wang, and Z. Liu, Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7, 12357 (2016)

    Article  ADS  Google Scholar 

  16. A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, and S. V. Kalinin, CuInP2S6 room temperature layered ferroelectric, Nano Lett. 15(6), 3808 (2015)

    Article  ADS  Google Scholar 

  17. P. Z. Hanakata, A. Carvalho, D. K. Campbell, and H. S. Park, Polarization and valley switching in monolayer group-IV monochalcogenides, Phys. Rev. B 94(3), 035304 (2016)

    Article  ADS  Google Scholar 

  18. R. X. Fei, W. Kang, and L. Yang, Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides, Phys. Rev. Lett. 117(9), 097601 (2016)

    Article  ADS  Google Scholar 

  19. F. Alsubaie, M. Muraykhan, L. Zhang, D. C. Qi, T. Liao, L. Z. Kou, A. J. Du, and C. Tang, Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material, Front. Phys. 19(1), 13201 (2024)

    Article  ADS  Google Scholar 

  20. L. Y. Shuang Zhou, H. Zhou, Y. Pu, Z. Gui, and J. Wang, Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications, Front. Phys. 16(1), 13301 (2021)

    Article  ADS  Google Scholar 

  21. L. Niu, F. C. Liu, Q. S. Zeng, X. Y. Zhu, Y. L. Wang, P. Yu, J. Shi, J. H. Lin, J. D. Zhou, Q. D. Fu, W. Zhou, T. Yu, X. F. Liu, and Z. Liu, Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes, Nano Energy 58, 596 (2019)

    Article  Google Scholar 

  22. J. Wang, C. L. Liu, L. B. Zhang, J. Chen, J. Chen, F. L. Yu, Z. Y. Zhao, W. W. Tang, X. Li, S. Zhang, G. H. Li, L. Wang, Y. Cheng, and X. S. Chen, Selective enhancement of photoresponse with ferroelectric-controlled BP/In2Se3 vdW heterojunction, Adv. Sci. (Weinh.) 10(11), 2205813 (2023)

    Google Scholar 

  23. Y. Cai, J. Yang, F. Wang, S. Li, Y. Wang, X. Zhan, F. Wang, R. Cheng, Z. Wang, and J. He, Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors, Front. Phys. 18(3), 33308 (2023)

    Article  ADS  Google Scholar 

  24. Q. Liang, Y. Zheng, C. Du, Y. Luo, J. Zhao, H. Ren, J. Xu, and Q. Yan, Asymmetric-layered tin thiophosphate: An emerging 2D ternary anode for high-performance sodium ion full cell, ACS Nano 12(12), 12902 (2018)

    Article  Google Scholar 

  25. Y. Zhang, F. K. Wang, X. Feng, Z. D. Sun, J. W. Su, M. Zhao, S. Z. Wang, X. Z. Hu, and T. Y. Zhai, Inversion symmetry broken 2D SnP2S6 with strong nonlinear optical response, Nano Res. 15(3), 2391 (2022)

    Article  ADS  Google Scholar 

  26. Z. Wang, R. D. Willett, R. A. Laitinen, and D. A. Cleary, Synthesis and crystal structure of SnP2S6, Chem. Mater. 7(5), 856 (1995)

    Article  Google Scholar 

  27. I. P. Studenyak, V. V. Mitrovcij, G. S. Kovacs, O. A. Mykajlo, M. I. Gurzan, and Y. M. Vysochanskii, Temperature variation of optical absorption edge in Sn2P2S6 and SnP2S6 crystals, Ferroelectrics 254(1), 295 (2001)

    Article  ADS  Google Scholar 

  28. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  29. Y. Zhang, F. K. Wang, X. Feng, Z. Zhang, K. L. Liu, F. F. Xia, W. X. Liang, X. Z. Hu, Y. Ma, H. Q. Li, G. C. Xing, and T. Y. Zhai, Self-trapped excitons in 2D SnP2S6 crystal with intrinsic structural distortion, Adv. Funct. Mater. 32(38), 2205757 (2022)

    Article  Google Scholar 

  30. J. Y. He, S. H. Lee, F. Naccarato, G. Brunin, R. Zu, Y. X. Wang, L. X. Miao, H. Y. Wang, N. Alem, G. Hautier, G. M. Rignanese, Z. Q. Mao, and V. Gopalan, SnP2S6: A promising infrared nonlinear optical crystal with strongnonresonant second harmonic generation and phase-matchability, ACS Photonics 9(5), 1724 (2022)

    Article  Google Scholar 

  31. X. Bourdon and V. B. Cajipe, Soft-chemistry forms of Sn2P2S6 and CuInP2S6, J. Solid State Chem. 141(1), 290 (1998)

    Article  ADS  Google Scholar 

  32. S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S. L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C. H. Hsu, A. J. Tan, L. C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, and S. Salahuddin, Enhanced ferroelectricity in ultrathin films grown directly on silicon, Nature 580(7804), 478 (2020)

    Article  ADS  Google Scholar 

  33. M. G. Han, M. S. J. Marshall, L. J. Wu, M. A. Schofield, T. Aoki, R. Twesten, J. Hoffman, F. J. Walker, C. H. Ahn, and Y. M. Zhu, Interface-induced nonswitchable domains in ferroelectric thin films, Nat. Commun. 5(1), 4693 (2014)

    Article  ADS  Google Scholar 

  34. M. Stengel and N. A. Spaldin, Origin of the dielectric dead layer in nanoscale capacitors, Nature 443(7112), 679 (2006)

    Article  ADS  Google Scholar 

  35. E. Tokumitsu, K. Okamoto, and H. Ishiwara, Low voltage operation of nonvolatile metal–ferroelectric–metal–insulator–semiconductor (MFMIS)-field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures, Jpn. J. Appl. Phys. 40(4S), 2917 (2001)

    Article  ADS  Google Scholar 

  36. J. M. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. Leroy, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nat. Mater. 10(4), 282 (2011)

    Article  ADS  Google Scholar 

  37. C. Wang, K. J. Jin, Z. T. Xu, L. Wang, C. Ge, H. B. Lu, H. Z. Guo, M. He, and G. Z. Yang, Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films, Appl. Phys. Lett. 98(19), 192901 (2011)

    Article  ADS  Google Scholar 

  38. J. O. Island, S. I. Blanter, M. Buscema, H. S. J. van der Zant, and A. Castellanos-Gomez, Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors, Nano Lett. 15(12), 7853 (2015)

    Article  ADS  Google Scholar 

  39. H. H. Fang and W. D. Hu, Photogating in low dimensional photodetectors, Adv. Sci. (Weinh.) 4(12), 1700323 (2017)

    Google Scholar 

  40. P. Yu, Q. S. Zeng, C. Zhu, L. J. Zhou, W. N. Zhao, J. C. Tong, Z. Liu, and G. W. Yang, Ternary Ta2PdS6 atomic layers for an ultrahigh broadband photoresponsive phototransistor, Adv. Mater. 33(2), 2005607 (2021)

    Article  Google Scholar 

  41. Q. J. Liang, Q. X. Wang, Q. Zhang, J. X. Wei, S. X. D. Lim, R. Zhu, J. X. Hu, W. Wei, C. Lee, C. Sow, W. J. Zhang, and A. T. S. Wee, High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2, Adv. Mater. 31(24), 1807609 (2019)

    Article  Google Scholar 

  42. G. W. Liang, L. H. Zeng, Y. H. Tsang, L. L. Tao, C. Y. Tang, P. K. Cheng, H. Long, X. Liu, J. Li, J. L. Qu, and Q. Wen, Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination, J. Mater. Chem. C 6(28), 7501 (2018)

    Article  Google Scholar 

  43. Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, Black phosphorus mid-infrared photodetectors with high gain, Nano Lett. 16(7), 4648 (2016)

    Article  ADS  Google Scholar 

  44. W. He, L. L. Kong, P. Yu, and G. W. Yang, Record-high work-function p-type CuBiP2Se6 atomic layers for high-photoresponse van der Waals vertical heterostructure phototransistor, Adv. Mater. 35(14), 2209995 (2023)

    Article  Google Scholar 

  45. L. H. Zeng, D. Wu, S. H. Lin, C. Xie, H. Y. Yuan, W. Lu, S. P. Lau, Y. Chai, L. B. Luo, Z. J. Li, and Y. H. Tsang, Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications, Adv. Funct. Mater. 29(1), 1806878 (2019)

    Article  Google Scholar 

  46. D. Wu, J. W. Guo, J. Du, C. X. Xia, L. H. Zeng, Y. Z. Tian, Z. F. Shi, Y. T. Tian, X. J. Li, Y. H. Tsang, and J. S. Jie, Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction, ACS Nano 13(9), 9907 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFE0194200 and 2021YFA1200903), the National Natural Science Foundation of China (No. 22175203), the Natural Science Foundation of Guangdong Province (Nos. 2022B1515020065 and 2020A1515110821), and the Guangzhou Science and Technology Project (No. 202102020126). This work was also supported by the Plan Fostering Project of State Key Laboratory of Optoelectronic Materials and Technologies, of Sun Yat-sen University (No. OEMT-2021-PZ-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yu.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Zhang, J., Gong, L. et al. Room-temperature ferroelectricity in van der Waals SnP2S6. Front. Phys. 19, 43202 (2024). https://doi.org/10.1007/s11467-023-1369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1369-0

Keywords

Navigation