Skip to main content
Log in

Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a scheme for implementing the nonadiabatic holonomic quantum computation (NHQC+) of two Rydberg atoms by using invariant-based reverse engineering (IBRE). The scheme is based on Förster resonance induced by strong dipole-dipole interaction between two Rydberg atoms, which provides a selective coupling mechanism to simply the dynamics of system. Moreover, for improving the fidelity of the scheme, the optimal control method is introduced to enhance the gate robustness against systematic errors. Numerical simulations show the scheme is robust against the random noise in control fields, the deviation of dipole-dipole interaction, the Förster defect, and the spontaneous emission of atoms. Therefore, the scheme may provide some useful perspectives for the realization of quantum computation with Rydberg atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)

    ADS  Google Scholar 

  2. G. L. Long, Grover algorithm with zero theoretical failure rate, Phys. Rev. A 64(2), 022307 (2001)

    ADS  Google Scholar 

  3. B. Paredes, F. Verstraete, and J. I. Cirac, Exploiting quantum parallelism to simulate quantum random many-body systems, Phys. Rev. Lett. 95(14), 140501 (2005)

    ADS  Google Scholar 

  4. Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)

    ADS  Google Scholar 

  5. H. Fan and X. Zhu, 12 superconducting qubits for quantum walks, Front. Phys. 14(6), 61201 (2019)

    ADS  Google Scholar 

  6. E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  7. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)

    ADS  Google Scholar 

  8. P. Z. Zhao, G. F. Xu, and D. M. Tong, Nonadiabatic holonomic multiqubit controlled gates, Phys. Rev. A 99(5), 052309 (2019)

    ADS  Google Scholar 

  9. P. Z. Zhao, K. Z. Li, G. F. Xu, and D. M. Tong, General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation, Phys. Rev. A 101(6), 062306 (2020)

    ADS  MathSciNet  Google Scholar 

  10. T. H. Xing, X. Wu, and G. F. Xu, Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101(1), 012306 (2020)

    ADS  Google Scholar 

  11. P. Z. Zhao, X. Wu, T. H. Xing, G. F. Xu, and D. M. Tong, Nonadiabatic holonomic quantum computation with Rydberg superatoms, Phys. Rev. A 98(3), 032313 (2018)

    ADS  Google Scholar 

  12. G. F. Xu, P. Z. Zhao, T. H. Xing, E. Sjöqvist, and D. M. Tong, Composite nonadiabatic holonomic quantum computation, Phys. Rev. A 95(3), 032311 (2017)

    ADS  Google Scholar 

  13. T. Chen, J. Zhang, and Z. Y. Xue, Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries, Phys. Rev. A 98(5), 052314 (2018)

    ADS  Google Scholar 

  14. Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, and L. Sun, Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124(23), 230503 (2020)

    ADS  Google Scholar 

  15. S. Li, P. Shen, T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)

    ADS  Google Scholar 

  16. B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)

    ADS  Google Scholar 

  17. M. V. Berry, Transitionless quantum driving, J. Phys. A 42(36), 365303 (2009)

    MathSciNet  MATH  Google Scholar 

  18. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)

    ADS  Google Scholar 

  19. A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111(10), 100502 (2013)

    ADS  Google Scholar 

  20. S. Qi and J. Jing, Berry-phase-based quantum gates assisted by transitionless quantum driving, J. Opt. Soc. Am. B 37(3), 682 (2020)

    ADS  Google Scholar 

  21. K. Khodjasteh and D. A. Lidar, Fault-tolerant quantum dynamical decoupling, Phys. Rev. Lett. 95(18), 180501 (2005)

    ADS  MATH  Google Scholar 

  22. A. M. Souza, G. A. Álvarez, and D. Suter, Robust dynamical decoupling for quantum computing and quantum memory, Phys. Rev. Lett. 106(24), 240501 (2011)

    ADS  Google Scholar 

  23. G. T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann, Arbitrarily accurate pulse sequences for robust dynamical decoupling, Phys. Rev. Lett. 118(13), 133202 (2017)

    ADS  Google Scholar 

  24. D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404 (2013)

    ADS  Google Scholar 

  25. X. T. Yu, Q. Zhang, Y. Ban, and X. Chen, Fast and robust control of two interacting spins, Phys. Rev. A 97(6), 062317 (2018)

    ADS  Google Scholar 

  26. H. R. Jr Lewis and W. B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field, J. Math. Phys. 10(8), 1458 (1969)

    ADS  MathSciNet  MATH  Google Scholar 

  27. X. Chen, E. Torrontegui, and J. G. Muga, Lewis-Riesenfeld invariants and transitionless quantum driving, Phys. Rev. A 83(6), 062116 (2011)

    ADS  Google Scholar 

  28. S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum computation on superconducting circuits with optimal control, Adv. Quantum Technol. 3(3), 2000001 (2020)

    Google Scholar 

  29. T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates, Phys. Rev. Lett. 122(8), 080501 (2019)

    ADS  Google Scholar 

  30. J. Xu, S. Li, T. Chen, and Z. Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)

    ADS  Google Scholar 

  31. Y. H. Kang, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101(3), 032322 (2020)

    ADS  MathSciNet  Google Scholar 

  32. C. Zhang, T. Chen, S. Li, X. Wang, and Z. Y. Xue, High-fidelity geometric gate for silicon-based spin qubits, Phys. Rev. A 101(5), 052302 (2020)

    ADS  Google Scholar 

  33. C. Y. Guo, L. L. Yan, S. Zhang, S. L. Su, and W. Li, Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms, Phys. Rev. A 102(4), 042607 (2020)

    ADS  Google Scholar 

  34. Y. H. Kang, Z. C. Shi, J. Song, and Y. Xia, Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102(2), 022617 (2020)

    ADS  Google Scholar 

  35. B. J. Liu, S. L. Su, and M. H. Yung, Nonadiabatic non-cyclic geometric quantum computation in Rydberg atoms, Phys. Rev. Research 2(4), 043130 (2020)

    ADS  Google Scholar 

  36. T. Chen, P. Shen, and Z. Y. Xue, Robust and fast holonomic quantum gates with encoding on superconducting circuits, Phys. Rev. Appl. 14(3), 034038 (2020)

    ADS  Google Scholar 

  37. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010)

    ADS  Google Scholar 

  38. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys. 5(2), 110 (2009)

    Google Scholar 

  39. A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)

    Google Scholar 

  40. D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, Coherent excitation transfer in a spin chain of three Rydberg atoms, Phys. Rev. Lett. 114(11), 113002 (2015)

    ADS  Google Scholar 

  41. S. L. Su, Y. Gao, E. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)

    ADS  Google Scholar 

  42. Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A 97(4), 042336 (2018)

    ADS  Google Scholar 

  43. S. L. Su, H. Z. Shen, E. Liang, and S. Zhang, One-step construction of the multiple-qubit Rydberg controlled-phase gate, Phys. Rev. A 98(3), 032306 (2018)

    ADS  Google Scholar 

  44. D. X. Li and X. Q. Shao, Directional quantum state transfer in a dissipative Rydberg-atom-cavity system, Phys. Rev. A 99(3), 032348 (2019)

    ADS  Google Scholar 

  45. Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng, Accelerated and noise-resistant generation of high-fidelity steady-state entanglement with Rydberg atoms, Phys. Rev. A 97(3), 032328 (2018)

    ADS  Google Scholar 

  46. R. H. Zheng, Y. H. Kang, D. Ran, Z. C. Shi, and Y. Xia, Deterministic interconversions between the Greenberger-Horne-Zeilinger states and the W states by invariant-based pulse design, Phys. Rev. A 101(1), 012345 (2020)

    ADS  Google Scholar 

  47. R. H. Zheng, Y. H. Kang, S. L. Su, J. Song, and Y. Xia, Robust and high-fidelity nondestructive Rydberg parity meter, Phys. Rev. A 102(1), 012609 (2020)

    ADS  Google Scholar 

  48. S. L. Su, F. Q. Guo, L. Tian, X. Y. Zhu, L. L. Yan, E. J. Liang, and M. Feng, Nondestructive Rydberg parity meter and its applications, Phys. Rev. A 101(1), 012347 (2020)

    ADS  Google Scholar 

  49. X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)

    ADS  Google Scholar 

  50. R. H. Zheng, Y. Xiao, S. L. Su, Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng, Fast and dephasing-tolerant preparation of steady Knill-Laflamme-Milburn states via dissipative Rydberg pumping, Phys. Rev. A 103(5), 052402 (2021)

    ADS  Google Scholar 

  51. H. D. Yin, X. X. Li, G. C. Wang, and X. Q. Shao, One-step implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping, Opt. Express 28(24), 35576 (2020)

    ADS  Google Scholar 

  52. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85(10), 2208 (2000)

    ADS  Google Scholar 

  53. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)

    ADS  Google Scholar 

  54. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98(2), 023002 (2007)

    ADS  Google Scholar 

  55. T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104(1), 013001 (2010)

    ADS  Google Scholar 

  56. S. L. Su, Y. Tian, H. Z. Shen, H. Zang, E. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)

    ADS  Google Scholar 

  57. M. M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms, Phys. Rev. A 89(3), 032334 (2014)

    ADS  Google Scholar 

  58. T. Keating, R. L. Cook, A. M. Hankin, Y. Y. Jau, G. W. Biedermann, and I. H. Deutsch, Robust quantum logic in neutral atoms via adiabatic Rydberg dressing, Phys. Rev. A 91(1), 012337 (2015)

    ADS  Google Scholar 

  59. A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Mølmer-Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101(3), 030301 (2020)

    ADS  Google Scholar 

  60. X. R. Huang, Z. X. Ding, C. S. Hu, L. T. Shen, W. Li, H. Wu, and S. B. Zheng, Robust Rydberg gate via Landau-Zener control of Förster resonance, Phys. Rev. A 98(5), 052324 (2018)

    ADS  Google Scholar 

  61. I. I. Beterov, G. N. Hamzina, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, and I. I. Ryabtsev, Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of Bell states, Phys. Rev. A 97(3), 032701 (2018)

    ADS  Google Scholar 

  62. T. Förster, Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Phys. 437(1–2), 55 (1948)

    MATH  Google Scholar 

  63. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Observation of the stark-tuned Förster resonance between two Rydberg atoms, Phys. Rev. Lett. 104(7), 073003 (2010)

    ADS  Google Scholar 

  64. H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, Enhancement of Rydberg-mediated singlephoton nonlinearities by electrically tuned Förster Resonances, Nat. Commun. 7, 12480 (2016)

    ADS  Google Scholar 

  65. S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, and A. Browaeys, Coherent dipole-dipole coupling between two single Rydberg atoms at an electrically-tuned Förster resonance, Nat. Phys. 10(12), 914 (2014)

    Google Scholar 

  66. H. Z. Wu, Z. B. Yang, and S. B. Zheng, Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade, Phys. Rev. A 82(3), 034307 (2010)

    ADS  Google Scholar 

  67. X. Q. Shao, Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102(5), 053118 (2020)

    ADS  Google Scholar 

  68. I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, S. Bergamini, E. A. Kuznetsova, and I. I. Ryabtsev, Two-qubit gates using adiabatic passage of the Stark-tuned Förster resonances in Rydberg atoms, Phys. Rev. A 94(6), 062307 (2016)

    ADS  Google Scholar 

  69. I. I. Beterov, I. N. Ashkarin, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, P. Pillet, and M. Saffman, Fast three-qubit Toffoli quantum gate based on three-body Förster resonances in Rydberg atoms, Phys. Rev. A 98(4), 042704 (2018)

    ADS  Google Scholar 

  70. D. X. Li and X. Q. Shao, Unconventional Rydberg pumping and applications in quantum information processing, Phys. Rev. A 98(6), 062338 (2018)

    ADS  Google Scholar 

  71. W. Li, P. J. Tanner, and T. F. Gallagher, Dipole-dipole excitation and ionization in an ultracold gas of Rydberg atoms, Phys. Rev. Lett. 94(17), 173001 (2005)

    ADS  Google Scholar 

  72. T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, and M. Weidemüller, Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas, Phys. Rev. Lett. 98(2), 023004 (2007)

    ADS  Google Scholar 

  73. T. Amthor, M. Reetz-Lamour, C. Giese, and M. Weidemüller, Modeling many-particle mechanical effects of an interacting Rydberg gas, Phys. Rev. A 76(5), 054702 (2007)

    ADS  Google Scholar 

  74. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New J. Phys. 14(9), 093040 (2012)

    ADS  MATH  Google Scholar 

  75. T. G. Walker and M. Saffman, Zeros of Rydberg-Rydberg Föster interactions, J. Phys. B 38(2), S309 (2005)

    ADS  Google Scholar 

  76. T. G. Walker and M. Saffman, Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms, Phys. Rev. A 77(3), 032723 (2008)

    ADS  Google Scholar 

  77. D. F. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)

    ADS  Google Scholar 

  78. S. Ravets, H. Labuhn, D. Barredo, T. Lahaye, and A. Browaeys, Measurement of the angular dependence of the dipole-dipole interaction between two individual Rydberg atoms at a Förster resonance, Phys. Rev. A 92(2), 020701 (2015)

    ADS  Google Scholar 

  79. P. Zanardi and D. A. Lidar, Purity and state fidelity of quantum channels, Phys. Rev. A 70(1), 012315 (2004)

    ADS  Google Scholar 

  80. L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Phys. Lett. A 367(1–2), 47 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  81. Z. Y. Xue, J. Zhou, and Z. D. Wang, Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits, Phys. Rev. A 92(2), 022320 (2015)

    ADS  Google Scholar 

  82. Z. Y. Xue, J. Zhou, Y. M. Chu, and Y. Hu, Nonadiabatic holonomic quantum computation with all-resonant control, Phys. Rev. A 94(2), 022331 (2016)

    ADS  Google Scholar 

  83. Z. Y. Xue, F. L. Gu, Z. P. Hong, Z. H. Yang, D. W. Zhang, Y. Hu, and J. Q. You, Nonadiabatic holonomic quantum computation with dressed-state qubits, Phys. Rev. Appl. 7(5), 054022 (2017)

    ADS  Google Scholar 

  84. P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96(5), 052316 (2017)

    ADS  Google Scholar 

  85. Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit, Phys. Rev. Lett. 121(11), 110501 (2018)

    ADS  Google Scholar 

  86. M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Realization of three-qubit quantum error correction with superconducting circuits, Nature 482(7385), 382 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575045, 11874114, and 11674060, the Natural Science Funds for Distinguished Young Scholar of Fujian Province under Grant 2020J06011 and Project from Fuzhou University under Grant JG202001-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Hui Shen or Yan Xia.

Additional information

arXiv: 2107.14486. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1108-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Shen, JH., Zheng, RH. et al. Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms. Front. Phys. 17, 21502 (2022). https://doi.org/10.1007/s11467-021-1108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1108-3

Keywords

Navigation