Skip to main content
Log in

Warm season temperature reconstruction in North China based on the tree-ring blue intensity of Picea meyeri

  • Research Articles
  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

In the past 30 years, observational climate datasets reveal a significant a drying and warming trend over in North China. Understanding of climatic variability over North China and its driving mechanism in a long-term perspective is, however, limited to a few sites only, especially the lack of temperature reconstructions based on latewood density and blue intensity. In this study, we developed a 281-year latewood blue intensity chronology based on 45 cores of Picea meyeri in western North China. Based on the discovery that the warm season (May–August) mean maximum temperature is the main controlling factor affecting the change in blue light reflection intensity, we established a regression model that explained 37% of the variance during the calibration period (1950–2020), allowing to trace the mean maximum temperature up to 1760 CE. From the past 261 years, we identified seven persistent high temperature periods (1760–1773, 1778–1796, 1805–1814, 1869–1880, 1889–1934, 1984–2000, 2004–2020) and three persistent low temperature periods (1815–1868, 1935–1963, 1969–1983) in North China. Comparisons of a nearby temperature reconstructions and climate gridded data indicate that our reconstruction record a wide range of temperature variations in North China. The analysis of links between large-scale climatic variation and the temperature reconstruction showed that there is a relationship between extremes in the warm season temperature and anomalous SSTs in the equatorial eastern Pacific, and implied that the extremes in the warm season temperature in North China will be intensified under future global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bao G, Liu Y, Linderholm H W, 2012. April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868AD. Palaeogeography, Palaeoclimatology, Palaeoecology, 313/314: 162–172.

    Article  Google Scholar 

  • Biondi F, Waikul K, 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30(3): 303–311.

    Article  Google Scholar 

  • Björklund J, von Arx G, Nievergelt D et al., 2019. Scientific merits and analytical challenges of tree-ring densitometry. Reviews of Geophysics, 57(4): 1224–1264.

    Article  Google Scholar 

  • Björklund J A, Gunnarson B E, Seftigen K et al., 2014. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate of the Past, 10(2): 877–885.

    Article  Google Scholar 

  • Blasing T J, Solomon A M, Duvick D N, 1984. Response functions revisited. Tree-Ring Bulletin, 44: 1–15.

    Google Scholar 

  • Buckley B M, Hansen K G, Griffin K L et al., 2018. Blue intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 50: 10–22.

    Article  Google Scholar 

  • Büntgen U, Esper J, Frank D C et al., 2005. A 1052-year tree-ring proxy for alpine summer temperatures. Climate Dynamics, 25(2): 141–153.

    Article  Google Scholar 

  • Büntgen U, Urban O, Krusic P J et al., 2021. Recent European drought extremes beyond Common Era background variability. Nature Geoscience, 14(4): 190–196.

    Article  Google Scholar 

  • Cai Q, Liu Y, Bao G et al., 2010. Tree-ring-based May–July mean temperature history for Lüliang Mountains, China, since 1836. Chinese Science Bulletin, 55: 3008–3014.

    Article  Google Scholar 

  • Cai Q, Liu Y, Fang C et al., 2022. Insight into spatial-temporal patterns of hydroclimate change on the Chinese Loess Plateau over the past 250 years, using new evidence from tree rings. Science of The Total Environment, 850: 157960.

    Article  Google Scholar 

  • Cai X, 2008. Water stress, water transfer and social equity in northern China: Implications for policy reforms. Journal of Environmental Management, 87(1): 14–25.

    Article  Google Scholar 

  • Campbell R, McCarroll D, Loader N J et al., 2007. Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy. The Holocene, 17(6): 821–828.

    Article  Google Scholar 

  • Campbell R, McCarroll D, Robertson I et al., 2011. Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy. Tree-Ring Research, 67(2): 127–134.

    Article  Google Scholar 

  • Cao X, Hu H, Kao P K et al., 2022. Improved spring temperature reconstruction using earlywood blue intensity in southeastern China. International Journal of Climatology, 42(12): 6204–6220.

    Article  Google Scholar 

  • Chen F, Hadad M, Zhao X et al., 2022a. Abnormally low precipitation-induced ecological imbalance contributed to the fall of the Ming Dynasty: New evidence from tree rings. Climatic Change, 173(1): 13.

    Article  Google Scholar 

  • Chen F, Opała-Owczarek M, Khan A et al., 2021. Late twentieth century rapid increase in high Asian seasonal snow and glacier-derived streamflow tracked by tree rings of the upper Indus River basin. Environmental Research Letters, 16(9): 094055.

    Article  Google Scholar 

  • Chen F, Opała-Owczarek M, Owczarek P et al., 2020. Summer monsoon season streamflow variations in the Middle Yellow River since 1570 CE inferred from tree rings of Pinus tabulaeformis. Atmosphere, 11(7): 717.

    Article  Google Scholar 

  • Chen F, Shang H M, Panyushkina I et al., 2019a. 500-year tree-ring reconstruction of Salween River streamflow related to the history of water supply in Southeast Asia. Climate Dynamics, 53(11): 6595–6607.

    Article  Google Scholar 

  • Chen F, Yuan Y, Trouet V et al., 2022b. Ecological and societal effects of Central Asian streamflow variation over the past eight centuries. NPJ Climate and Atmospheric Science, 5(1): 27.

    Article  Google Scholar 

  • Chen F, Yuan Y, Wei W et al., 2012. Tree ring density-based summer temperature reconstruction for Zajsan Lake area, East Kazakhstan. International Journal of Climatology, 32(7): 1089–1097.

    Article  Google Scholar 

  • Chen F, Yuan Y, Yu S et al., 2019b. A 391-year summer temperature reconstruction of the Tien Shan, reveals far-reaching summer temperature signals over the midlatitude Eurasian Continent. Journal of Geophysical Research: Atmospheres, 124(22): 11850–11862.

    Article  Google Scholar 

  • Chen J, Wang L, Zhu H et al., 2009. Reconstructing mean maximum temperature of growing season from the maximum density of the Schrenk spruce in Yili, Xinjiang, China. Chinese Science Bulletin, 54(13): 2300–2308.

    Article  Google Scholar 

  • Cheng H, Zhang H, Zhao J et al., 2019. Chinese stalagmite paleoclimate researches: A review and perspective. Science China Earth Sciences, 62(10): 1489–1513.

    Article  Google Scholar 

  • Chevalier M, Davis B A S, Heiri O et al., 2020. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Science Reviews, 210: 103384.

    Article  Google Scholar 

  • Cook E R, Anchukaitis K J, Buckley B M et al., 2010. Asian monsoon failure and megadrought during the last millennium. Science, 328(5977): 486–489.

    Article  Google Scholar 

  • Davi N K, Jacoby G C, Wiles G C, 2003. Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska. Quaternary Research, 60(3): 252–262.

    Article  Google Scholar 

  • Davi N K, Rao M P, Wilson R et al., 2021. Accelerated recent warming and temperature variability over the past eight centuries in the Central Asian Altai from blue intensity in tree rings. Geophysical Research Letters, 48(16): e2021GL092933.

    Article  Google Scholar 

  • Ding Y, 1992. Summer monsoon rainfalls in China. Journal of the Meteorological Society of Japan (Ser. II), 70(1B): 373–396.

    Google Scholar 

  • Ernakovich J G., Hopping K A, Berdanier A B et al., 2014. Predicted responses of Arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20(10): 3256–3269.

    Article  Google Scholar 

  • Fang K, Gou X, Chen F et al., 2009. Drought variations in the eastern part of northwest China over the past two centuries: Evidence from tree rings. Climate Research, 38(2): 129–135.

    Article  Google Scholar 

  • Fritts H C, 1971. Dendroclimatology and dendroecology. Quaternary Research, 1(4): 419–449.

    Article  Google Scholar 

  • Fuentes M, Salo R, Björklund J et al., 2018. A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. The Holocene, 28(2): 254–266.

    Article  Google Scholar 

  • Gou X, Yang T, Gao L et al., 2013. A 457-year reconstruction of precipitation in the southeastern Qinghai-Tibet Plateau, China using tree-ring records. Chinese Science Bulletin, 58(10): 1107–1114.

    Article  Google Scholar 

  • Grissino-Mayer H D, 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research, 57(2): 205–221.

    Google Scholar 

  • Hadad M A, González-Reyes Á, Roig F A et al., 2021. Tree-ring-based hydroclimatic reconstruction for the northwest Argentine Patagonia since 1055 CE and its teleconnection to large-scale atmospheric circulation. Global and Planetary Change, 202: 103496.

    Article  Google Scholar 

  • Harley G L, Heeter K J, Maxwell J T et al., 2021. Towards broad-scale temperature reconstructions for Eastern North America using blue light intensity from tree rings. International Journal of Climatology, 41(Suppl.1): E3142–E3159.

    Google Scholar 

  • Harris I, Osborn T J, Jones P et al., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1): 109.

    Article  Google Scholar 

  • He M, Bräuning A, Grießinger J et al., 2018. May–June drought reconstruction over the past 821 years on the south-central Tibetan Plateau derived from tree-ring width series. Dendrochronologia, 47: 48–57.

    Article  Google Scholar 

  • Heeter K J, Harley G L, Maxwell J T et al., 2021a. Summer temperature variability since 1730 CE across the low-to-mid latitudes of western North America from a tree ring blue intensity network. Quaternary Science Reviews, 267: 107064.

    Article  Google Scholar 

  • Heeter K J, King D J, Harley G L et al., 2022. Video tutorial: Measuring blue intensity with the CooRecorder software application. Dendrochronologia, 76: 125999.

    Article  Google Scholar 

  • Heeter K J, Rochner M L, Harley G L, 2021b. Summer air temperature for the Greater Yellowstone Ecoregion (770–2019 CE) over 1,250 years. Geophysical Research Letters, 48(7): e2020GL092269.

    Article  Google Scholar 

  • Huang B, Banzon V F, Freeman E et al., 2015. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4) (Part I): Upgrades and intercomparisons. Journal of climate, 28(3): 911–930.

    Article  Google Scholar 

  • Huang S, Li P, Huang Q et al., 2017. The propagation from meteorological to hydrological drought and its potential influence factors. Journal of Hydrology, 547: 184–195.

    Article  Google Scholar 

  • Jones P D, Mann M E, 2004. Climate over past millennia. Reviews of Geophysics, 42(2): RG2002.

    Article  Google Scholar 

  • Ju H, van der Velde M, Lin E et al., 2013. The impacts of climate change on agricultural production systems in China. Climatic Change, 120(1): 313–324.

    Article  Google Scholar 

  • Kaczka R J, Wilson R, 2021. I-BIND: International Blue intensity network development working group. Dendrochronologia, 68: 125859.

    Article  Google Scholar 

  • Khan R, Jolly R, Fatima T et al., 2022. Extraction processes for deriving cellulose: A comprehensive review on green approaches. Polymers for Advanced Technologies, 33(7): 2069–2090.

    Article  Google Scholar 

  • Kozlowski T T, Kramer P J, Pallardy S G, 1991. The physiological ecology of woody plants. Tree Physiology, 8(2): 213–213.

    Article  Google Scholar 

  • Lafferty K D, 2009. The ecology of climate change and infectious diseases. Ecology, 90(4): 888–900.

    Article  Google Scholar 

  • Lei Y, Zhang H, Chen F et al., 2016. How rural land use management facilitates drought risk adaptation in a changing climate: A case study in arid northern China. Science of The Total Environment, 550: 192–199.

    Article  Google Scholar 

  • Li Q, Liu Y, Nakatsuka T et al., 2015. The 225-year precipitation variability inferred from tree-ring records in Shanxi province, the North China, and its teleconnection with Indian summer monsoon. Global and Planetary Change, 132: 11–19.

    Article  Google Scholar 

  • Li Q, Liu Y, Zhao B et al., 2018. Temperature variability in North-Central China during the past 231 years based on multiple proxies. Quaternary International, 487: 26–32.

    Article  Google Scholar 

  • Li Q, Nakatsuka T, Kawamura K et al., 2011. Hydroclimate variability in the North China Plain and its link with El Niño–Southern Oscillation since 1784 A.D.: Insights from tree-ring cellulose δ18O. Journal of Geophysical Research: Atmospheres, 116(D22).

  • Liang E, Liu X, Yuan Y et al., 2006. The 1920s drought recorded by tree rings and historical documents in the semi-arid and arid areas of northern China. Climatic Change, 79(3): 403–432.

    Article  Google Scholar 

  • Liu J, Chen F, Chen J et al., 2011. Humid medieval warm period recorded by magnetic characteristics of sediments from Gonghai Lake, Shanxi, North China. Chinese Science Bulletin, 56(23): 2464–2474.

    Article  Google Scholar 

  • Liu Y, Wang L, Li Q et al., 2019. Asian summer monsoon-related relative humidity recorded by tree ring δ18O during last 205 years. Journal of Geophysical Research: Atmospheres, 124(17/18): 9824–9838.

    Article  Google Scholar 

  • Liu Y, Wang Y, Li Q et al., 2013. Reconstructed May–July mean maximum temperature since 1745AD based on tree-ring width of Pinus tabulaeformis in Qianshan Mountain, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 388: 145–152.

    Article  Google Scholar 

  • Ma L, Long H, Zhang Y et al., 2019. Agricultural labor changes and agricultural economic development in China and their implications for rural vitalization. Journal of Geographical Sciences, 29(2): 163–179.

    Article  Google Scholar 

  • Maher B A, 2016. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quaternary Science Reviews, 154: 23–84.

    Article  Google Scholar 

  • Mann M E, Steinman B A, Brouillette D J et al., 2022. On the estimation of internal climate variability during the preindustrial past millennium. Geophysical Research Letters, 49(2): e2021GL096596.

    Article  Google Scholar 

  • Marcott S A, Shakun J D, Clark P U et al., 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science, 339(6124): 1198–1201.

    Article  Google Scholar 

  • Maxwell R S, Larsson L A, 2021. Measuring tree-ring widths using the CooRecorder software application. Dendrochronologia, 67: 125841.

    Article  Google Scholar 

  • Melvin T M, Briffa K R, 2008. A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia, 26(2): 71–86.

    Article  Google Scholar 

  • Mohtadi M, Prange M, Steinke S, 2016. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature, 533(7602): 191–199.

    Article  Google Scholar 

  • Moore B J, Neiman P J, Ralph F M et al., 2012. Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Monthly Weather Review, 140(2): 358–378.

    Article  Google Scholar 

  • Morton J F, 2007. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences, 104(50): 19680–19685.

    Article  Google Scholar 

  • Moss R H, Edmonds J A, Hibbard K A et al., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756.

    Article  Google Scholar 

  • Nagavciuc V, Roibu C C, Ionita M et al., 2019. Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania. Dendrochronologia, 54: 56–63.

    Article  Google Scholar 

  • Osborn T J, Biffa K, Jones P, 1997. Adjusting variance for sample-size in tree-ring chronologies and other regional mean timeseries. Dendrochronologia, 15: 89–99.

    Google Scholar 

  • Pang H, Hou S, Zhang W et al., 2020. Temperature trends in the northwestern Tibetan Plateau constrained by ice core water isotopes over the past 7,000 years. Journal of Geophysical Research: Atmospheres, 125(19): e2020JD032560.

    Article  Google Scholar 

  • Petit J R, Jouzel J, Raynaud D et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735): 429–436.

    Article  Google Scholar 

  • Poole C F, 2020. Chapter 1: Milestones in the development of liquid-phase extraction techniques. Liquid-Phase Extraction, 1–44.

  • Qian W, Lin X, Zhu Y et al., 2007. Climatic regime shift and decadal anomalous events in China. Climatic Change, 84(2): 167–189.

    Article  Google Scholar 

  • Qian W, Zhu Y, 2001. Climate change in China from 1880 to 1998 and its impact on the environmental condition. Climatic Change, 50(4): 419–444.

    Article  Google Scholar 

  • Qin L, Liu K, Shang H et al., 2022. Minimum temperature during the growing season limits the radial growth of timberline Schrenk spruce (P. schrenkiana). Agricultural and Forest Meteorology, 322: 109004.

    Article  Google Scholar 

  • Ren H L, Jin F F, 2011. Niño indices for two types of ENSO. Geophysical Research Letters, 38(4): L04704.

    Article  Google Scholar 

  • Rydval M, Larsson L Å, McGlynn L et al., 2014. Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 32(3): 191–204.

    Article  Google Scholar 

  • Seftigen K, Fuentes M, Ljungqvist F C et al., 2020. Using blue intensity from drought-sensitive Pinus sylvestris in Fennoscandia to improve reconstruction of past hydroclimate variability. Climate Dynamics, 55(3): 579–594.

    Article  Google Scholar 

  • Seftigen K, Linderholm H W, Drobyshev I et al., 2013. Reconstructed drought variability in southeastern Sweden since the 1650s. International Journal of Climatology, 33(11): 2449–2458.

    Article  Google Scholar 

  • Sherwood S C, Webb M J, Annan J D et al., 2020. An assessment of earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58(4): e2019RG000678.

    Article  Google Scholar 

  • Shibistova O, Lloyd J, Zrazhevskaya G et al., 2002. Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia. Tellus B: Chemical and Physical Meteorology, 54(5): 568–589.

    Article  Google Scholar 

  • Speer J H, 2010. Fundamentals of Tree-ring Research. University of Arizona Press.

  • Tipton J, Hooten M, Pederson N et al., 2016. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models. Environmetrics, 27(1): 42–54.

    Article  Google Scholar 

  • Tsvetanov N, Dolgova E, Panayotov M, 2020. First measurements of blue intensity from Pinus peuce and Pinus heldreichii tree rings and potential for climate reconstructions. Dendrochronologia, 60: 125681.

    Article  Google Scholar 

  • Tylianakis J M, Didham R K, Bascompte J et al., 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11(12): 1351–1363.

    Article  Google Scholar 

  • Varis O, Vakkilainen P, 2001. China’s 8 challenges to water resources management in the first quarter of the 21st century. Geomorphology, 41(2): 93–104.

    Article  Google Scholar 

  • Walther G R, Post E, Convey P et al., 2002. Ecological responses to recent climate change. Nature, 416(6879): 389–395.

    Article  Google Scholar 

  • Wang P X, Wang B, Cheng H et al., 2017. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Science Reviews, 174: 84–121.

    Article  Google Scholar 

  • Wilson R, Rao R, Rydval M et al., 2014. Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada. The Holocene, 24(11): 1428–1438.

    Article  Google Scholar 

  • Wilson R, Wilson D, Rydval M et al., 2017. Facilitating tree-ring dating of historic conifer timbers using blue intensity. Journal of Archaeological Science, 78: 99–111.

    Article  Google Scholar 

  • Xu H J, Wang X P, Zhao C Y et al., 2018. Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014. Agricultural and Forest Meteorology, 262: 1–13.

    Article  Google Scholar 

  • Yao T, Thompson L G et al., 1997. Climate variation since the Last Interglaciation recorded in the Guliya ice core. Science in China Series D: Earth Sciences, 40(6): 662–668.

    Article  Google Scholar 

  • Yu S, Yuan Y, Wei W et al., 2013. A 352-year record of summer temperature reconstruction in the western Tianshan Mountains, China, as deduced from tree-ring density. Quaternary Research, 80(2): 158–166.

    Article  Google Scholar 

  • Yue W, Zhao X, Chen F et al., 2022. Reconstructed precipitation in the Lohit River basin, southern Tibetan Plateau since 1720 CE and its weak linkages with monsoon-season Brahmaputra discharge. International Journal of Climatology, 42(7): 3793–3808.

    Article  Google Scholar 

  • Zachos J C, Dickens G R, Zeebe R E, 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176): 279–283.

    Article  Google Scholar 

  • Zeng X, Liu Y, Song H et al., 2022. Tree-ring-based drought variability in northern China over the past three centuries. Journal of Geographical Sciences, 32(2): 214–224.

    Article  Google Scholar 

  • Zhang E, Yin X A, Xu Z et al., 2018. Bottom-up quantification of inter-basin water transfer vulnerability to climate change. Ecological Indicators, 92: 195–206.

    Article  Google Scholar 

  • Zhang Y, Tian Q, Guillet S et al., 2017. 500-yr. precipitation variability in southern Taihang Mountains, China, and its linkages to ENSO and PDO. Climatic Change, 144(3): 419–432.

    Article  Google Scholar 

  • Zhao Y, Shi J, Shi S et al., 2019. Early summer hydroclimatic signals are captured well by tree-ring earlywood width in the eastern Qinling Mountains, central China. Climate of the Past, 15(3): 1113–1131.

    Article  Google Scholar 

  • Zhao Z Y, Zuo J, Zillante G, 2017. Transformation of water resource management: A case study of the South-to-North Water Diversion project. Journal of Cleaner Production, 163: 136–145.

    Article  Google Scholar 

  • Zhou T J, Yu R C, 2005. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. Journal of Geophysical Research: Atmospheres, 110: D08104.

    Article  Google Scholar 

  • Zscheischler J, Westra S, van den Hurk B J J M et al., 2018. Future climate risk from compound events. Nature Climate Change, 8(6): 469–477.

    Article  Google Scholar 

  • Zwiers F W, Alexander L V, Hegerl G C et al., 2013. Climate extremes: Challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. In: Asrar G R, Hurrell J W ed. Climate Science for Serving Society: Research, Modeling and Prediction Priorities. Springer: Dordrecht, Netherlands, 339–389.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Additional information

Foundation: National Natural Science Foundation of China, No.32061123008

Author: Chen Qiaomei (1991–), PhD Candidate, E-mail: cqm@mail.ynu.edu.cn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Yue, W., Chen, F. et al. Warm season temperature reconstruction in North China based on the tree-ring blue intensity of Picea meyeri. J. Geogr. Sci. 33, 2511–2529 (2023). https://doi.org/10.1007/s11442-023-2187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-023-2187-6

Keywords

Navigation