Skip to main content

Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events

  • Chapter
  • First Online:
Climate Science for Serving Society

Abstract

This paper focuses primarily on extremes in the historical instrumental period. We consider a range of phenomena, including temperature and precipitation extremes, tropical and extra-tropical storms, hydrological extremes, and transient extreme sea-level events. We also discuss the extent to which detection and attribution research has been able to link observed changes to external forcing of the climate system. Robust results are available that detect and often attribute changes in frequency and intensity of temperature extremes to external forcing. There is also some evidence that on a global scale, precipitation extremes have intensified due to forcing. However, robustly detecting and attributing forced changes in other important extremes, such as tropical and extratropical storms or drought remains challenging.

In our review we find that there are multiple challenges that constrain advances in research on extremes. These include the state of the historical observational record, limitations in the statistical and other tools that are used for analyzing observed changes in extremes, limitations in the understanding of the processes that are involved in the production of extreme events, and in the ability to describe the natural variability of extremes with models and other tools.

Despite these challenges, it is clear that enormous progress is being made in the quest to improve the understanding of extreme events, and ultimately, to produce predictive products that will help society to manage the associated risks.

Chapter Contributors

M Donat, O Krueger, S Morak, TQ Murdock, M Schnorbus, V Ryabin, C Tebaldi, XL Wang

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The joint World Meteorological Organization Commission on Climatology (CCl), World Climate Research Program Climate Variability and Predictability project (CLIVAR), and Joint Commission on Marine Meteorology (JCOMM) Expert Team on Climate Change Detection and Indices. See http://www.clivar.org/category/panels/etccdi

  2. 2.

    A probability distribution is said to be stable when the average of a sample of independently drawn values from that distribution has a distribution belonging to the same family of distributions (Feller 1971). The Gaussian distribution is an example of a stable distribution. Stability can also be defined in terms of some other types of operations that may be applied to a sample. In particular, max-stable distributions have the property that the maximum value of such a sample again has a distribution within the same family of distributions. The generalized extreme value distribution is max-stable.

  3. 3.

    Asia-Pacific Network for Global Change Research.

  4. 4.

    See http://www.ncdc.noaa.gov/oa/climate/cdmp/forts.html

  5. 5.

    http://www.surfacetemperatures.org/

  6. 6.

    The use of unpaid volunteers, often solicited via the internet.

  7. 7.

    http://www.cicsnc.org/corp/presentations/Scott%20Hausman.pdf (presentation made to the 30th Conference on Hurricanes and Tropical Meteorology, Ponte Verde, Florida, USA, 15–20 April 2012).

References

  • Abeysirigunawardena DS, Walker IJ (2008) Sea level responses to climatic variability and change in northern British Columbia. Atmosphere-Ocean 46:277–296

    Article  Google Scholar 

  • Abeysirigunawardena DS, Gilleland E, Bronaugh D, Wong W (2009) Extreme wind regime responses to climate variability and change in the inner south coast of British Columbia, Canada. Atmosphere-Ocean 47:41–62

    Article  Google Scholar 

  • Aguilar E et al (2009) Changes in temperature and precipitation extremes in western Central Africa, Guinea Conakry and Zimbabwe, 1955–2006. J Geophys Res 114, D02115. doi:10.1029/2008JD011010

    Article  Google Scholar 

  • Alexander L, Donat M (2011) The CLIMDEX project: creation of long-term global gridded products for the analysis of temperature and precipitation extremes. In: WCRP Open Science conference, Denver, Oct 2011

    Google Scholar 

  • Alexander LV et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111, D05109. doi:10.1029/2005JD006290

    Article  Google Scholar 

  • Alexander LV, Uotila P, Nicholls N (2009) The influence of sea surface temperature variability on global temperature and precipitation extremes. J Geophys Res-Atmos 114, D18116. doi:10.1029/2009JD012301

    Article  Google Scholar 

  • Alexander LV, Wang XL, Wan H, Trewin B (2011) Significant decline in storminess over southeast Australia since the late 19th century. Aust Meteorol Oceanogr J 61:23–30

    Google Scholar 

  • Alexandersson H, Schmith T, Iden K, Tuomenvirta H (1998) Long term variations of the storm climate over NW Europe. Glob Atmos Ocean Syst 6:97–120

    Google Scholar 

  • Allamano P, Claps P, Laio F (2009) Global warming increases flood risk in mountainous areas. Geophys Res Lett 36, L24404

    Article  Google Scholar 

  • Allan R, Tett S, Alexander LV (2009) Fluctuations of autumn-winter severe storms over the British Isles: 1920 to present. Int J Climatol 29:357–371. doi:10.1002/joc.1765

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  CAS  Google Scholar 

  • Alley WM (1984) The palmer drought severity index: limitations and assumptions. J Clim Appl Meteorol 23:1100–1109

    Article  Google Scholar 

  • Andreadis KM, Lettenmaier DP (2006) Trends in 20th century drought over the continental United States. Geophys Res Lett 33, L10403. doi:10.1029/2006GL025711

    Article  Google Scholar 

  • Barnett TP et al (2008) Human-induced changes in the hydrology of the western United States. Science 319:1080–1083

    Article  CAS  Google Scholar 

  • Bärring L, Fortuniak K (2009) Multi-indices analysis of southern Scandinavian storminess 1780–2005 and links to interdecadal variations in the NW Europe-North Sea region. Int J Climatol 29:373–384

    Article  Google Scholar 

  • Bärring L, von Storch H (2004) Scandinavian storminess since about 1800. Geophys Res Lett 31:1790–1820

    Article  Google Scholar 

  • Barros V, Chamorro L, Coronel G, Baez J (2004) The major discharge events in the Paraguay river: magnitudes, source regions, and climate forcings. J Hydrometeorol 5:1161–1170

    Article  Google Scholar 

  • Bates BC, Kundzewics ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, 210 pp

    Google Scholar 

  • Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:454–458

    Article  CAS  Google Scholar 

  • Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res 109, D11111. doi:10.1029/2004JD004536

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Bindoff NL et al (2007) Observations: oceanic climate change and sea level. In: Solomon S et al (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 65:233–240

    Article  Google Scholar 

  • Blanchet J, Davison AC (2011) Spatial modeling of extreme snow depth. Ann Appl Stat 5:1699–1725. doi:10.1214/11-AOAS464

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232

    Article  CAS  Google Scholar 

  • Brayshaw DB, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65:2842–2860

    Article  Google Scholar 

  • Brooks HE (2004) On the relationship of tornado path length and width to intensity. Weather Forecast 19:310–319

    Article  Google Scholar 

  • Burke EJ, Brown SJ (2008) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9:292–299

    Article  Google Scholar 

  • Butler AH, Thompson DW, Heikes R (2010) The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J Clim 23:3474–3496. doi:10.1175/2010JCLI3228.1

    Article  Google Scholar 

  • Caesar J, Alexander L, Vose R (2006) Large-scale changes in observed daily maximum and minimum temperatures: creation and analysis of a new gridded data set. J Geophys Res 111, D05101. doi:10.1029/2005JD006280

    Article  Google Scholar 

  • Callaghan J, Power SB (2011) Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim Dyn 37:647–662. doi:10.1007/s00382-010-0883-2

    Article  Google Scholar 

  • Camargo S, Ting M, Kushnir Y (2013) Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Clim Dyn 40:1515–1529

    Article  Google Scholar 

  • Catto JL, Shaffrey LC, Hodges KJ (2010) Can climate models capture the structure of extratropical cyclones? J Clim 23:1621–1635

    Article  Google Scholar 

  • Chen C-T, Knutson TR (2008) On the verification and comparison of extreme rainfall indices from climate models. J Clim 21:1605–1621. doi:10.1175/2007JCLI1494.1

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R (2011) Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J Hydrol 401:190–202

    Article  Google Scholar 

  • Christensen JH et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Christidis N, Stott PA, Brown SJ, Hegerl GC, Caesar J (2005) Detection of changes in temperature extremes during the second half of the 20th century. Geophys Res Lett 32, L20716

    Article  Google Scholar 

  • Christidis N, Stott PA, Brown SJ (2011) The role of human activity in the recent warming of extremely warm daytime temperatures. J Clim 24:1922–1930

    Article  Google Scholar 

  • Church JA, Gregory JM, White NJ, Platten SM, Mitrovica XJ (2011) Understanding and projecting sea level change. Oceanography 24:130–143

    Article  Google Scholar 

  • Coles S (2001) An introduction to the statistical modeling of extreme values. Springer, London, 208 pp. ISBN ISBN 1-85233-459-2

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes and consequences. Earth Sci Rev 81:93–134. doi:10.1016/j.earscirev.2006.12.002

    Article  Google Scholar 

  • Crompton RP, Pielke RA Jr, McAneney KJ (2011) Emergence timescales for detection of anthropogenic climate change in US tropical cyclone loss data. Environ Res Lett 6:014003. doi:10.1088/1748-9326/6/1/014003

    Article  Google Scholar 

  • Cunderlik JM, Ouarda TBMJ (2009) Trends in the timing and magnitude of floods in Canada. J Hydrol 375:471–480

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2:45–65

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • Debernard JB, Roed LP (2008) Future wind, wave and storm surge climate in the Northern Seas: a revisit. Tellus A 60:427–438

    Article  Google Scholar 

  • Delgado JM, Apel H, Merz B (2009) Flood trends and variability in the Mekong river. Hydrol Earth Syst Sci 6:6691–6719

    Article  Google Scholar 

  • Di Baldassarre G, Montanari A, Lins H, Koutsoyiannis D, Brandimarte L, Blöschl G (2010) Flood fatalities in Africa: from diagnosis to mitigation. Geophys Res Lett 37, L22402

    Article  Google Scholar 

  • Diffenbaugh NS, Trapp RJ, Brooks H (2008) Does global warming influence tornado activity? Eos Trans Am Geophys Union 89:553

    Article  Google Scholar 

  • Donat M, Alexander L (2011) Uncertainties related to the production of gridded global data sets of observed climate extreme indices. In: Abstract for WCRP Open Science conference, Denver, Oct 2011

    Google Scholar 

  • Donat MG, Renggli D, Wild S, Alexander LV, Leckebusch GC, Ulbrich U (2011) Reanalysis suggests long term upward trends in European storminess since 1871. Geophys Res Lett 38, L14703. doi:10.1029/2011GL047995

    Article  Google Scholar 

  • Dupuis DJ (2012) Modeling waves of extreme temperature: the changing tails of four cities. J Am Stat Assoc 107(497):24–39. doi:10.1080/01621459.2011.643732

    Article  Google Scholar 

  • Ehsanzadeh E, Adamowksi K (2007) Detection of trends in low flows across Canada. Can Water Resour J 32:251–264

    Article  Google Scholar 

  • Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95

    Article  CAS  Google Scholar 

  • Emanuel KA (2007) Environmental factors affecting tropical cyclone power dissipation. J Clim 20:5497–5509

    Article  Google Scholar 

  • Emanuel K (2010) Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J Adv Model Earth Syst 2:1. doi:10.3894/JAMES.2010.2.1

    Article  Google Scholar 

  • Emanuel K (2011) Global warming effects on U.S. hurricane damage. Weather Clim Soc 3:261–268

    Article  Google Scholar 

  • Emanuel K, Solomon S, Folini D, Davis S, Cagnazzo C (2013) Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J Clim 26:2288–2301. doi:10.1175/JCLI-D-12-00242.1

    Google Scholar 

  • Evan AT, Vimont DJ, Heidinger AK, Kossin JP, Bennartz R (2009) The role of aerosols in the evolution of tropical North Atlantic ocean temperature anomalies. Science 324:778–781

    Article  CAS  Google Scholar 

  • Evan A, Kossin J, Chung C, Ramanathan V (2011) Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 479:94–97

    Article  CAS  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol 2. Wiley, New York, 704 pp

    Google Scholar 

  • Fiore MME, D’Onofrio EE, Pousa JL, Schnack EJ, Bertola GR (2009) Storm surges and coastal impacts at Mar del Plata, Argentina. Cont Shelf Res 29:1643–1649

    Article  Google Scholar 

  • Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33:917–935

    Article  Google Scholar 

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403

    Article  CAS  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture – atmosphere interactions during the 2003 European summer heatwave. J Clim 20:5081–5099

    Article  Google Scholar 

  • Flannigan M, Logan K, Amiro B, Skinner W, Stocks B (2005) Future area burned in Canada. Clim Chang 72:1–16

    Article  CAS  Google Scholar 

  • Fleig AK, Tallasken LM, Hisdal H, Demuth S (2006) A global evaluation of streamflow drought characteristics. Hydrol Earth Syst Sci 10:535–552

    Article  Google Scholar 

  • Fogt RL, Perlwitz J, Monaghan AJ, Bromwich DH, Jones JM, Marshall GJ (2009) Historical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J Clim 22:5346–5365

    Article  Google Scholar 

  • Folland CK, Palmer TN, Parker DE (1986) Sahelian rainfall and worldwide sea temperatures 1901–1985. Nature 320:602–607

    Article  Google Scholar 

  • Folland CK et al (1995) Observed climate variability and change. In: Houghton JT et al (eds) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge, pp 99–181

    Google Scholar 

  • Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Fowler HJ, Cooley D, Sain SR, Thurston M (2010) Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment. Extremes 13:241–267

    Article  Google Scholar 

  • Frei C, Schär C (2001) Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J Clim 14:1568–1584

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Giannini A, Biasutti M, Verstraete MM (2008) A climate model-based review of drought in the Sahel: desertification, the re-greening and climate change. Glob Planet Chang 64:119–128

    Article  Google Scholar 

  • Gillett NP, Stott PA (2009) Attribution of anthropogenic influence on seasonal sea level pressure. Geophys Res Lett 36, L23709

    Article  Google Scholar 

  • Gillett NP, Weaver AJ, Zwiers FW, Wehner MF (2004) Detection of volcanic influence on global precipitation. Geophys Res Lett 31, L12217. doi:10.1029/2004GL020044

    Article  Google Scholar 

  • Gillett NP, Allan RJ, Ansell TJ (2005) Detection of external influence on sea level pressure with a multi-model ensemble. Geophys Res Lett 32, L19714

    Article  Google Scholar 

  • Gillett NP, Stott PA, Santer BD (2008) Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys Res Lett 35, L09707

    Article  Google Scholar 

  • Gleason KL, Lawrimore JH, Levinson DH, Karl TR, Karoly DJ (2008) A revised U.S. climate extremes index. J Clim 21:2124–2137. doi:10.1175/2007JCLI1883.1

    Article  Google Scholar 

  • Grant AN, Bronnimann S, Haimberger L (2008) Arctic warming vertical structure contested. Nature 455:E2–E3. doi:10.1038/nature07257

    Article  CAS  Google Scholar 

  • Greeves CZ, Pope VD, Stratton RA, Martin GM (2007) Representation of Northern Hemisphere winter storm tracks in climate models. Clim Dyn 28:683–702

    Article  Google Scholar 

  • Grinsted A, Moore AJ, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim Dyn 34:461–472

    Article  Google Scholar 

  • Haerter JO, Roeckner E, Tomassini L, von Storch JS (2009) Parametric uncertainty effects on aerosol radiative forcing. Geophys Res Lett 36, L15707

    Article  Google Scholar 

  • Hanel M, Buishand TA, Ferro CAT (2009) A nonstationary index flood model for precipitation extremes in transient regional climate model simulations. J Geophys Res 114, D15107. doi:10.1029/2009JD011712

    Article  Google Scholar 

  • Hanesiak JM et al (2011) Characterization and summary of the 1999–2005 Canadian Prairie drought. Atmosphere-Ocean 49:421–452. doi:10.1080/07055900.2011.626757

    Article  Google Scholar 

  • Hanlon H, Hegerl GC, Tett SFB, Smith DM (2012a) Can a decadal forecasting system predict temperature extreme indices? J Clim, in press. doi10.1175/JCLI-D-12-00512.1

  • Hanlon H, Morak S, Hegerl GC (2012b) Detection and prediction of mean and extreme European summer temperatures with a CMIP5 multi-model ensemble. J Geophys Res, submitted

    Google Scholar 

  • Hanna E, Cappelen J, Allan R, Jonsson T, Le Blancq F, Lillington T, Hickey K (2008) New insights into North European and North Atlantic surface pressure variability, storminess, and related climatic change since 1830. J Clim 21:6739–6766

    Article  Google Scholar 

  • Hannaford J, Marsh T (2006) An assessment of trends in UK runoff and low flows using a network of undisturbed catchments. Int J Climatol 26:1237–1253

    Article  Google Scholar 

  • Hannaford J, Marsh TJ (2008) High-flow and flood trends in a network of undisturbed catchments in the UK. Int J Climatol 28:1325–1338

    Article  Google Scholar 

  • Hanson CE, Palutikof JP, Davies TD (2004) Objective cyclone climatologies of the North Atlantic – a comparison between the ECMWF and NCEP reanalyses. Clim Dyn 22:757–769

    Article  Google Scholar 

  • Harper B, Hardy T, Mason L, Fryar R (2009) Developments in storm tide modelling and risk assessment in the Australian region. Nat Hazard 51:225–238

    Article  Google Scholar 

  • Heaton MJ, Katzfuss M, Ramachandar S, Pedings K, Gilleland E, Mannshardt-Shamseldin E, Smith RL (2010) Spatio-temporal models for large-scale indicators of extreme weather. Environmetrics 22:294–303

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Stott PA, Kharin VV (2004) Detectability of anthropogenic changes in annual temperature and precipitation extremes. J Clim 17:3683–3700

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S et al (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Hegerl GC, Hanlon H, Beierkuhnlein C (2011) Elusive extremes. Nat Geosci 4:142–143

    Article  CAS  Google Scholar 

  • Hegerl GC, Hoegh-Guldberg O, Casassa G, Hoerling MP, Kovats RS, Parmesan C, Pierce DW, Stott PA (2010) Good practice guidance paper on detection and attribution related to anthropogenic climate change. In: Stocker TF, Field CB, Qin D, Barros V, Plattner G-K, Tignor M, Midgley PM, Ebi KL (eds) Meeting report of the Intergovernmental Panel on Climate Change expert meeting on detection and attribution of anthropogenic climate change. IPCC working group I technical support unit, University of Bern, Bern

    Google Scholar 

  • Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83:1149–1165

    Google Scholar 

  • Held IM, Delworth TL, Lu J, Findell KL, Knutson TR (2005) Simulation of Sahel drought in the 20th and 21st centuries. Proc Natl Acad Sci USA 102:17891–17896. doi:10.1073_pnas.0509057102

    Article  CAS  Google Scholar 

  • Hidalgo HG et al (2009) Detection and attribution of streamflow timing changes to climate change in the Western United States. J Clim 22:3838–3855

    Article  Google Scholar 

  • Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4:17–21. doi:10.1038/ngeo1032

    Article  CAS  Google Scholar 

  • Hodges KI, Hoskins BJ, Boyle J, Thorncroft C (2003) A comparison of recent reanalysis datasets using objective feature tracking: storm tracks and tropical easterly waves. Mon Weather Rev 131:2012–2037

    Article  Google Scholar 

  • Hoerling MP, Kumar A (2003) The perfect ocean for drought. Science 299:691–694

    Article  CAS  Google Scholar 

  • Hoerling MP, Hurrell J, Eischeid J, Phillips A (2006) Detection and attribution of twentieth-century Northern and Southern African rainfall change. J Clim 19:3989–4008

    Article  Google Scholar 

  • Hoerling M, Quan X, Eischeid J (2009) Distinct causes for two principal US droughts of the 20th century. Geophys Res Lett 36, L19708. doi:10.1029/2009GL039860

    Article  Google Scholar 

  • Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J Clim 22:5003–5020

    Article  Google Scholar 

  • Holland GJ, Webster PJ (2007) Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? Philos Trans R Soc A 365:2695–2716

    Article  Google Scholar 

  • Hossain F, Jeyachandran I, Pielke R Jr (2009) Have large dams altered extreme precipitation patterns. Eos Trans Am Geophys Union 90:453

    Article  Google Scholar 

  • IPCC (2007a) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 996 pp

    Google Scholar 

  • IPCC (2007b) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML et al (eds) Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 976 pp

    Google Scholar 

  • IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 1–19

    Google Scholar 

  • Jiang T, Kundzewicz ZW, Su B (2008) Changes in monthly precipitation and flood hazard in the Yangtze River Basin, China. Int J Climatol 28:1471–1481

    Article  Google Scholar 

  • Johnson NC, Xie S-P (2010) Changes in the sea surface temperature threshold for tropical convection. Nat Geosci 3:842–845

    Article  CAS  Google Scholar 

  • Karl TR (1983) Some spatial characteristics of drought duration in the United States. J Clim Appl Meteorol 22:1356–1366

    Article  Google Scholar 

  • Karl TR, Knight RW (1997) The 1995 Chicago heat wave: how likely is a recurrence? Bull Am Meteorol Soc 78:1107–1119

    Article  Google Scholar 

  • Karl TR, Knight RW, Easterling DR, Quayle RG (1996) Indices of climate change for the United States. Bull Am Meteorol Soc 77:279–292

    Article  Google Scholar 

  • Karl TR, Meehl GA, Christopher DM, Hassol SJ, Waple AM, Murray WL (2008) Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, 164 pp

    Google Scholar 

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Chang 21:289–302

    Article  Google Scholar 

  • Katz R, Parlange M, Naveau P (2002) Extremes in hydrology. Adv Water Resour 25:1287–1304

    Article  Google Scholar 

  • Kay AL, Davies HN, Bell VA, Jones RG (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Chang 92:41–63

    Article  Google Scholar 

  • Kenyon J, Hegerl GC (2008) Influence of modes of climate variability on global temperature extremes. J Clim 21:3872–3889

    Article  Google Scholar 

  • Kenyon J, Hegerl GC (2010) Influence of modes of climate variability on global precipitation extremes. J Clim 23:6248–6262

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulation with a coupled atmosphere–ocean GCM. J Clim 13:3760–3788

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  • Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Klawa M, Ulbrich U (2003) A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat Hazard Earth Syst Sci 3:725–732

    Article  Google Scholar 

  • Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation (WCDMP-72, WMO-TD/No.1500), 56 pp

    Google Scholar 

  • Knapp KR, Kossin JP (2007) A new global tropical cyclone data set from ISCCP B1 geostationary satellite observations. J Appl Remote Sens 1:013505

    Article  Google Scholar 

  • Knapp KR, Kruk MC (2010) Quantifying inter-agency differences in tropical cyclone best track wind speed estimates. Mon Weather Rev 138:1459–1473

    Article  Google Scholar 

  • Knutson TR, Tuleya RE (2004) Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Clim 17:3477–3495

    Article  Google Scholar 

  • Knutson TR, Sirutis JJ, Garner ST, Vecchi GA, Held IM (2008) Simulated reduction in Atlantic hurricane frequency under twenty-first- century warming conditions. Nat Geosci 1:359–364

    Article  CAS  Google Scholar 

  • Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163

    Article  CAS  Google Scholar 

  • Kossin JP, Knapp KR, Vimont DJ, Murnane RJ, Harper BA (2007) A globally consistent reanalysis of hurricane variability and trends. Geophys Res Lett 34, L04815. doi:10.1029/2006GL028836

    Article  Google Scholar 

  • Kossin JP, Camargo SJ, Sitkowski M (2010) Climate modulation of North Atlantic hurricane tracks. J Clim 23:3057–3076

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140

    Article  CAS  Google Scholar 

  • Koster RD, Guo ZC, Yang RQ, Dirmeyer PA, Mitchell K, Puma MJ (2009) On the nature of soil moisture in land surface models. J Clim 22:4322–4335

    Article  Google Scholar 

  • Krueger O, von Storch H (2011) Evaluation of an air pressure based proxy for storm activity. J Clim 24:2612–2619

    Article  Google Scholar 

  • Krueger O, von Storch H (2012) The informational value of pressure-based single-station proxies for storm activity. J Atmos Ocean Technol 29(4):569–580

    Article  Google Scholar 

  • Kundzewicz ZW et al (2005) Summer floods in central Europe: climate change track? Nat Hazard 36:165–189

    Article  Google Scholar 

  • Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728

    Article  Google Scholar 

  • Lambert FH, Gillett NP, Stone DA, Huntingford C (2005) Attribution studies of observed land precipitation changes with nine coupled models. Geophys Res Lett 32, L18704. doi:10.1029/2005GL023654

    Article  Google Scholar 

  • Landsea CW (2007) Counting Atlantic tropical cyclones back to 1900. Eos Trans Am Geophys Union 88:197–202

    Article  Google Scholar 

  • Landsea CW, Anderson C, Charles N, Clark G, Dunion J, Fernandez-Partagas J, Hungerford P, Neumann C, Zimmer M (2004) The Atlantic hurricane database re-analysis project: documentation for the 1851–1910 alterations and additions to the HURDAT database. In: Murnane RJ, Liu KB (eds) Hurricanes and Typhoons: past, present and future. Columbia University Press, New York, pp 177–221

    Google Scholar 

  • Landsea CW, Harper BA, Hoarau K, Knaff JA (2006) Can we detect trends in extreme tropical cyclones? Science 313:452–454

    Article  CAS  Google Scholar 

  • Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2009) Impact of duration thresholds on Atlantic tropical cyclone counts. J Clim 23:2508–2519. doi:10.1175/2009JCLI3034.1

    Google Scholar 

  • Lau KM, Zhou YP, Wu HT (2008) Have tropical cyclones been feeding more extreme rainfall? J Geophys Res 113, D23113. doi:10.1029/2008JD009963

    Article  CAS  Google Scholar 

  • Lin N, Emanuel K, Oppenheimer M, Vannarcke E (2012) Physically based assessment of hurricane surge threat under climate change. Nat Clim Change 2:462–467. doi:10.1038/NCLIMATE1389

    Google Scholar 

  • Lorenz C, Kunstmann H (2012) The hydrological cycle in three state-of-the-art reanalyses: intercomparison and performance analysis. J Hydrometeorol 13(5):1397–1420. doi:10.1175/JHM-D-11-088.1

    Article  Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos Trans Am Geophys Union 87:233–241

    Article  Google Scholar 

  • Mann ME, Emanual KA, Holland GJ, Webster PJ (2007) Atlantic tropical cyclones revisited. Eos Trans Am Geophys Union 88:349–350

    Article  Google Scholar 

  • Mannshardt-Shamseldin EC, Smith RL, Sain SR, Mearns LD, Cooley D (2010) Downscaling extremes: a comparison of extreme value distributions in point-source and gridded precipitation data. Ann Appl Stat 4:484–502

    Article  Google Scholar 

  • Manton MJ et al (2001) Trends in extreme daily rainfall and temperature in southeast Asia and the South Pacific: 1916–1998. Int J Climatol 21:269–284

    Article  Google Scholar 

  • Marcos M, Tsimplis MN, Shaw AGP (2009) Sea level extremes in southern Europe. J Geophys Res 114, C01007

    Article  Google Scholar 

  • McInnes KL, Walsh KJE, Hubbert GD, Beer T (2003) Impact of sea-level rise and storm surges on a coastal community. Nat Hazard 30:187–207

    Article  Google Scholar 

  • McInnes KL, Macadam I, Hubbert GD, O’Grady JG (2009) A modelling approach for estimating the frequency of sea level extremes and the impact of climate change in southeast Australia. Nat Hazard 51:115–137

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Preprints, Eighth conference on applied climatology, American Meteorological Society, Anaheim, pp 179–184

    Google Scholar 

  • Meehl GA et al (2007a) Global climate projections. In: Solomon S et al (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Meehl GA et al (2007b) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensen L (2012) The impact of climate change on global tropical cyclone damage. Nat Clim Change 2:205–209. doi:10.1038/nclimate1357

    Google Scholar 

  • Menéndez M, Woodworth PL (2010) Changes in extreme high water levels based on a quasi-global tide-gauge dataset. J Geophys Res 115, C10011

    Article  Google Scholar 

  • Mesinger F et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360. doi:10.1175/BAMS-87-3-343

    Article  Google Scholar 

  • Milly PCD, Dunne KA (2011) On the hydologic adjustment of climate-model projections: the potential pitfall of potential evapotranspiration. Earth Interact 15:1–14

    Article  Google Scholar 

  • Milly PCD, Wetherald RW, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517

    Article  CAS  Google Scholar 

  • Min SK, Zhang X, Zwiers FW (2008) Human induced Arctic moistening. Science 320:518–520

    Article  CAS  Google Scholar 

  • Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381. doi:10.1038/nature09763

    Article  CAS  Google Scholar 

  • Mitchell JFB, Wilson CA, Cunnington WM (1987) On CO2 sensitivity and model dependence of results. Q J R Meteorol Soc 113:293–322

    Article  CAS  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Ivins ER, Vermeersen LLA, Milne GA, Lambeck K (2010) Surface mass loading on a dynamic earth: complexity and contamination in the geodetic analysis of global sea-level trends. In: Church JA et al (eds) Understanding sea-level rise and variability. Wiley-Blackwell, Chichester, pp 285–325

    Chapter  Google Scholar 

  • Morak S, Hegerl GC, Kenyon J (2011) Detectable regional changes in the number of warm nights. Geophys Res Lett 38, L17703. doi:10.1029/2011GL048531

    Article  Google Scholar 

  • Morak S, Hegerl GC, Christidis N (2013) Detectable changes in temperature extremes. J Clim 26:1561–1574

    Article  Google Scholar 

  • Mousavi ME, Irish JL, Frey AE, Olivera F, Edge BL (2011) Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding. Clim Chang 104:575–597. doi:10.1007/s10584-009-9790-0

    Article  Google Scholar 

  • Mudelsee M, Borngen M, Tetzlaff G, Grunewald U (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425:166–169

    Article  CAS  Google Scholar 

  • Mueller B, Seneviratne SI (2012) Hot days induced by precipitation deficits at the global scale. Proc Natl Acad Sci USA 109:12398–12403. doi:10.1073/pnas.1204330109

    Article  CAS  Google Scholar 

  • Nicholls N, Alexander L (2007) Has the climate become more variable or extreme? Progress 1992–2006. Prog Phys Geogr 31:1–11

    Article  Google Scholar 

  • Nicholls N, Larsen S (2011) Impact of drought on temperature extremes in Melbourne, Australia. Aust Meteorol Oceanogr J 61:113–116

    Google Scholar 

  • Noake K, Polson D, Hegerl GC, Zhang X (2011) Changes in seasonal land precipitation during the latter twentieth century. Geophys Res Lett 39, L03706

    Google Scholar 

  • Orlowsky B, Seneviratne SI (2012) Global changes in extremes events: regional and seasonal dimension. Clim Chang 110:669–696. doi:10.1007/s10584-011-0122-9

    Article  Google Scholar 

  • Otto FE, Massey N, van Oldenburg GJ, Jones RG, Allen MR (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39, L04702. doi:10.1029/2011GL050422

    Article  Google Scholar 

  • Page CM, Nicholls N, Plummer N, Trewin BC, Manton MJ, Alexander L, Chambers LE, Choi Y, Collins DA, Gosai A, Della-Marta P, Haylock MR, Inape K, Laurent V, Maitrepierre L, Makmur EEP, Nakamigawa H, Ouprasitwong N, McGree S, Pahalad J, Salinger MJ, Tibig L, Tran TD, Vediapan K, Zhai P (2004) Data rescue in the South-east Asia and South Pacific region: challenges and opportunities. Bull Amer Meteorol Soc 85:1483–1489

    Article  Google Scholar 

  • Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilbberts AGJ, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470:382–385

    Article  CAS  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research paper 45, US Department of Commerce, Weather Bureau, Washington, DC, 58 pp. Available from NOAA Library and Information Services Division, Washington, DC, 20852

    Google Scholar 

  • Peterson TC, Manton MJ (2008) Monitoring changes in climate extremes: a tale of international collaboration. Bull Am Meteorol Soc 89:1266–1271

    Article  Google Scholar 

  • Peterson TC, Anderson D, Cohen SJ, Cortez M, Murname R, Parmesan C, Phillips D, Pulwarty R, Stone J (2008) Why weather and climate extremes matter. In: Karl TR et al (eds) Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, pp 11–33

    Google Scholar 

  • Peterson TC, Stott PA, Herring S (eds) (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteorol Soc 93:1041–1066. doi:10.1175/BAMS-D-12-00021.1

    Google Scholar 

  • Polson D, Hegerl GC, Zhang X, Osborn T (2013) Causes of robust seasonal land precipitation changes. J Clim, in press, doi:10.1175/JCLI-D-12-00474.1

    Google Scholar 

  • Portmann RW, Solomon S, Hegerl GC (2009) Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc Natl Acad Sci USA 106:7324–7329. doi:10.1073_pnas.0808533106

    CAS  Google Scholar 

  • Prudhomme C, Davies H (2009) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate. Clim Chang 93:197–222

    Article  Google Scholar 

  • Ramsay HA, Sobel AH (2011) The effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single column model. J Clim 24:183–193

    Article  Google Scholar 

  • Randall DA et al (2007) Climate models and their evaluation. In: Solomon S et al (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34, L17403. doi:10.1029/2007GL031166

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Rosenzweig C et al (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML et al (eds) Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ryan BF, Watterson IG, Evans JL (1992) Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter – validation of GCM tropical climates. Geophys Res Lett 19:1831–1834

    Article  Google Scholar 

  • Sang H, Gelfand AE (2009) Hierarchical modeling for extreme values observed over space and time. Environ Ecol Stat 16:407–426

    Article  Google Scholar 

  • Sang H, Gelfand AE (2010) Continuous spatial process models for spatial extreme values. J Agric Biol Environ Stat 15:49–65

    Article  Google Scholar 

  • Santer BD et al (2006) Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc Natl Acad Sci USA 103:13905–13910

    Article  CAS  Google Scholar 

  • Schlather M (2002) Models for stationary max-stable random fields. Extremes 5:33–44

    Article  Google Scholar 

  • Schmidt H, von Storch H (1993) German Bight storms analysed. Nature 365:791

    Article  Google Scholar 

  • Schmith T, Kaas E, Li T-S (1998) Northeast Atlantic winter storminess 1875–1995 re-analysed. Clim Dyn 14:529–536

    Article  Google Scholar 

  • Schubert S et al (2009) A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. J Clim 22:5251–5272

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  CAS  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger E, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161

    Article  CAS  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken D, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Intergovernmental Panel on Climate Change special report on managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Sheffield J, Wood EF (2008) Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J Clim 21:432–458

    Article  Google Scholar 

  • Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci USA 107(21):9552–9555

    Article  CAS  Google Scholar 

  • Shiklomanov AI, Lammers RB, Rawlins MA, Smith LC, Pavelsky TM (2007) Temporal and spatial variations in maximum river discharge from a new Russian data set. J Geophys Res 112:G04S53

    Article  Google Scholar 

  • Shrestha RR, Berland AJ, Schorbus MA, Werner AT (2011) Climate change impacts on hydroclimatic regimes in the Peace and Columbia watersheds, British Columbia, Canada. In: Pacific climate impacts consortium, University of Victoria, Victoria, 37 pp. Available from http://pacificclimate.org/sites/default/files/publications/Shrestha.Synthesis.FinalReport.Apr2011.pdf

  • Sigmond M, Kushner PJ, Scinocca JF (2007) Discriminating robust and non-robust atmospheric circulation responses to global warming. J Geophys Res 112, D20121. doi:10.1029/2006JD008270

    Article  Google Scholar 

  • Sillmann J, Croci-Maspoli M, Kallache M, Katz RW (2011) Extreme cold winter temperature in Europe under the influence of North Atlantic atmospheric blocking. J Clim 24:5899–5913. doi:10.1175/2011JCLI4075.1

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extreme indices in the CMIP5 multi-model ensemble. Part 1: model evaluation in the present climate. J Geophys Res 118, doi:10.1002/jgrd.50203

    Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013b) Climate extreme indices in the CMIP5 multi-model ensemble. Part 2: future climate projections. J Geophys Res 118, doi:10.1002/jgrd.50188

    Google Scholar 

  • Smith RL (1986) Extreme value theory based on the r-largest annual events. J Hydrol 86:27–43

    Article  Google Scholar 

  • Smith RL (1990) Max-stable processes and spatial extremes. Unpublished manuscript. Available at http://www.stat.unc.edu/postscript/rs/spatex.pdf

  • Smits A, Klein Tank AMG, Können GP (2005) Trends in storminess over the Netherlands, 1962–2002. Int J Climatol 25:1331–1344. doi:10.1002/joc.1195

    Article  Google Scholar 

  • Solomon S et al (2007) Technical summary. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Stahl K, Hisdal H, Hannaford J, Tallaksen LM, van Lanen HAJ, Sauquet E, Demuth S, Fendekova M, Jodar J (2010) Streamflow trends in Europe: evidence from dataset of near-natural catchments. Hydrol Earth Syst Sci 14:2367–2382

    Article  Google Scholar 

  • Steadman RG (1979) The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. J Appl Meteorol 18:861–873

    Article  Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614. doi:10.1038/nature0308

    Article  CAS  Google Scholar 

  • Stott PA et al (2012) Attribution of weather and climate-related extreme events. In: WCRP Open Science conference: climate research in service to society, World Climate Research Programme, Denver (this volume)

    Google Scholar 

  • Sugi M, Murakami H, Yoshimura J (2009) A reduction in global tropical cyclone frequency due to global warming. SOLA 5:164–167. doi:10.2151/sola.2009-042

    Article  Google Scholar 

  • Svensson C, Hannaford J, Kundzewicz ZW, Marsh TJ (2006) Trends in river floods: why is there no clear signal in observations? IAHS/UNESCO Kov Colloq: Front Flood Res 305:1–18

    Google Scholar 

  • Swanson KL (2008) Non-locality of Atlantic tropical cyclone intensitites. Geochem Geophys Geosyst 9:Q04V01

    Article  Google Scholar 

  • Taye MT, Ntegeka V, Ogiramoi NP, Willems P (2011) Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol Earth Syst Sci 15:209–222

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes—an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal 20th century SST trends in the North Atlantic. J Clim 22:1469–1481. doi:10.1175/2008JCLI2561.1

    Article  Google Scholar 

  • Trapp RJ et al (2005) Tornadoes from squall lines and bow echoes. Pt I: climatological distribution. Weather Forecast 20:23–34

    Article  Google Scholar 

  • Trenberth KE et al (2007) Observations: surface and atmospheric climate change. In: Solomon S et al (eds) The Physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ulbrich U, Pinto JG, Kupfer H, Leckebusch GC, Spangehl T, Reyers M (2008) Changing northern hemisphere storm tracks in an ensemble of IPCC climate change simulations. J Clim 21:1669–1679

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA‐40 re‐analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834

    Article  Google Scholar 

  • van Oldenborgh GJ, van Urk A, Allen M (2012) The absence of a role of climate change in the 2011 Thailand floods. In: Peterson TC et al (eds) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteor Soc 93:1041–1067. doi:10.1175/BAMS-D-12-00021.1

    Google Scholar 

  • van Pelt SC, Kabat P, ter Maat TW, van den Hurk BJJM, Weerts AH (2009) Discharge simulations performed with a hydrological model using bias corrected regional climate model input. Hydrol Earth Syst Sci 13:2387–2397

    Article  Google Scholar 

  • Van Wagner C (1987) Development and structure of the Canadian forest fire weather index system. Technical report #35, Canadian Forest Service

    Google Scholar 

  • Vannitsem S, Naveau P (2007) Spatial dependences among precipitation maxima over Belgium. Nonlinear Process Geophys 14:621–630

    Article  Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, Thepaut J-N, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geogr 3:756–761. doi:10.1038/NGEO979

    CAS  Google Scholar 

  • Vecchi GA, Knutson TR (2008) On estimates of historical North Atlantic tropical cyclone activity. J Clim 21:3580–3600

    Article  Google Scholar 

  • Vecchi GA, Knutson TR (2011) Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J Clim 24:1736–1746. doi:10.1175/2010JCLI3810.1

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070

    Article  CAS  Google Scholar 

  • Vecchi GA, Swanson KL, Soden BJ (2008) Whither hurricane activity. Science 322:687–689

    Article  CAS  Google Scholar 

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci USA 106:21527–21532

    Article  CAS  Google Scholar 

  • Vicente-Serrano SM, Begueria S, Lopez-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  • Villarini G, Vecchi GA (2013) Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J Clim 26:3231–3240. doi:10.1175/JCLI-D-12-00441.1

    Google Scholar 

  • Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45, W08417

    Google Scholar 

  • Wang XL, Swail VR (2001) Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J Clim 14:2204–2221

    Article  Google Scholar 

  • Wang XL, Wan H, Swail VR (2006) Observed changes in cyclone activity in Canada and their relationships to major circulation regimes. J Clim 19:896–915

    Article  Google Scholar 

  • Wang AH, Bohn TJ, Mahanama SP, Koster RD, Lettenmaier DP (2009a) Multimodel ensemble reconstruction of drought over the continental United States. J Clim 22:2694–2712

    Article  Google Scholar 

  • Wang XL, Swail VR, Zwiers FW, Zhang X, Feng Y (2009b) Detection of external influence on trends of atmospheric storminess and northern oceans wave heights. Clim Dyn 32:189–203

    Article  CAS  Google Scholar 

  • Wang XL, Wan H, Zwiers FW, Swail VR, Compo GP, Allan RJ, Vose RS, Jourdain S, Yin X (2011) Trends and low-frequency variability of storminess over western Europe, 1887–2007. Clim Dyn 37:2355–2371. doi:10.1007/s00382-011-1107-0

    Google Scholar 

  • Wang XL, Feng Y, Compo GP, Swail VR, Zwiers FW, Allan RJ, Sardeshmukh PD (2012) Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Clim Dyn. doi:10.1007/s00382-012-1450-9

    Google Scholar 

  • Watson CC, Johnson ME (2004) Hurricane loss estimation models: opportunities for improving the State of the Art. Bull Am Meteorol Soc 85:1713

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846

    Article  CAS  Google Scholar 

  • Wehner MF (2013) Very extreme seasonal precipitation in the NARCCAP ensemble: model performance and projections. Clim Dyn 40(1–2):59–80. doi:10.1007/s00382-012-1393-1

    Google Scholar 

  • Wehner MF, Smith RL, Bala G, Duffy P (2010) The effect of horizontal resolution on simulation of very extreme precipitation events in a global atmospheric model. Clim Dyn 34:241–247. doi:10.1007/s00382-009-0656-y

    Article  Google Scholar 

  • Wells N, Goddard S, Hayes MH (2004) A self-calibrating Palmer drought severity index. J Clim 17:2335–2351

    Article  Google Scholar 

  • Wilby RL, Beven KJ, Reynard NS (2008) Climate change and fluvial flood risk in the UK: more of the same? Hydrol Process 22:2511–2523

    Article  Google Scholar 

  • Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. Bull Am Meteorol Soc 79:2693–2714

    Article  Google Scholar 

  • Woodhouse CA, Meko DM, MacDonald GM, Stahle DW, Cook ER (2010) A 1200-year perspective on 21st century drought in southwestern North America. Proc Natl Acad Sci USA 107:21283–21288. doi:10.1175/2011JCLI4075.1

    Article  CAS  Google Scholar 

  • Woodworth PL, Gehrels WR, Nerem RS (2011) Nineteenth and twentieth century changes in sea level. Oceanography 24:80–93. doi:10.5670/oceanog.2011.29

    Article  Google Scholar 

  • Xie P, Janowiak JE, Arkin PA, Adler R, Gruber A, Ferraro R, Huffman GJ, Curtis S (2003) GPR pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214

    Article  Google Scholar 

  • Zazulie N, Rusticucci M, Solomon S (2010) Changes in climate at high southern latitudes: a unique daily record at orcadas spanning 1903–2008. J Clim 23:189–196. doi:10.1175/2009JCLI3074.1

    Article  Google Scholar 

  • Zhang R, Delworth T (2009) A new method for attributing climate variations over the Atlantic Hurricane Basin’s main development region. Geophys Res Lett 36, L06701. doi:10.1029/2009GL037260

    Article  Google Scholar 

  • Zhang X, Zwiers FZ (2013) Statistical indices for diagnosing and detecting changes in extremes. In: Agha Kouchak et al (eds) Extremes in a changing climate. Water Science and Technology Library 65. Springer, Dordrecht. doi:10.1007/978-94-007-4479-0-1

  • Zhang X, Zwiers FW, Li G (2004) Monte Carlo experiments on the detection of trends in extreme values. J Clim 17:1945–1952

    Article  Google Scholar 

  • Zhang X, Hegerl GC, Zwiers FW (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim 18:1641–1651

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465

    Article  CAS  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl G (2009) The influence of data precision on the calculation of temperature percentile indices. Int J Climatol. doi:10.1002/joc.1738

    Google Scholar 

  • Zhang X, Wang J, Zwiers FW, Groisman PY (2010) The influence of large scale climate variability on winter maximum daily precipitation over North America. J Clim 23:2902–2915

    Article  Google Scholar 

  • Zhang X, Alexander LV, Hegerl GC, Klein Tank A, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change 2:851–870. doi:10.1002/wcc.147

    Google Scholar 

  • Zhao M, Held I, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J Clim 22:6653–6678. doi:10.1175/2009JCLI3049.1

    Article  Google Scholar 

  • Zwiers FW (1987) An extreme value analysis of wind speed at 5 Canadian locations. Can J Stat 15:317–327

    Article  Google Scholar 

  • Zwiers FW, Zhang X, Feng Y (2011) Anthropogenic influence on long return period daily temperature extremes at regional scales. J Clim 24:881–892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis W. Zwiers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zwiers, F.W. et al. (2013). Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. In: Asrar, G., Hurrell, J. (eds) Climate Science for Serving Society. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6692-1_13

Download citation

Publish with us

Policies and ethics