Skip to main content
Log in

Shear response of calcareous sand-steel snake skin-inspired interfaces

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Calcareous sand-steel interfaces are common in offshore construction and contribute an important role in the overall load transfer and stability of offshore systems. In this paper, a modified interface direct shear apparatus is used to conduct a series of interface shear tests between calcareous sand and steel surfaces with asymmetric, morphologic profiles inspired by ventral snake scales. Test results showed that the peak and residual interface shear strengths and the dilatancy are greater when calcareous sands are sheared against the scales (cranial shearing) than when calcareous sands are sheared along the scales (caudal shearing). Furthermore, the increase in the normal stresses leads to a higher peak shear strength while lower interface peak friction angle and dilatation angle. The increase in the ratio of asperity length L to asperity height H leads to lower peak shear strength, interface peak friction and dilatation angles, and weaker strain softening. The particle breakage of the calcareous sand under interface shearing is affected by the normal stresses developed and the geometry of the steel surface. The relationships among the peak friction angle, the normalized normal stresses, and the roughness can be obtained by a three-dimensional logarithmic surface, which also satisfactorily captures the dilatation angle and particle breakage index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Afzali-Nejad A et al (2017) Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces. Geotext Geomembr 45:54–66. https://doi.org/10.1016/j.geotexmem.2016.07.005

    Article  Google Scholar 

  2. ASTM (2009) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, West Conshohoken, PA

  3. Chen Y et al (2022) Hypergravity experiments on multiphase media evolution. Sci China Technol Sci 65:2791–2808. https://doi.org/10.1007/s11431-022-2125-x

    Article  Google Scholar 

  4. Cui H et al (2022) A constitutive model incorporating particle breakage for gravelly soil-structure interface under cyclic loading. Sci China Technol Sci 65:2846–2855. https://doi.org/10.1007/s11431-022-2100-6

    Article  Google Scholar 

  5. Cui M-J et al (2020) Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotech 16:1377–1389. https://doi.org/10.1007/s11440-020-01099-0

    Article  Google Scholar 

  6. DeJong JT et al (2017) A bio-inspired perspective for geotechnical engineering innovation. In: Proceedings of 3rd Conference on Geotechnical Frontiers, 3rd Conference on Geotechnical Frontiers, pp. 862–870

  7. DeJong JT, Westgate ZJ (2009) Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior. J Geotech Geoenviron Eng 135:1646–1660. https://doi.org/10.1061/(Asce)1090-0241(2009)135:11(1646)

    Article  Google Scholar 

  8. DeJong JT et al (2006) Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry. Soils Found 46:15–28. https://doi.org/10.3208/sandf.46.15

    Article  Google Scholar 

  9. Evgin E, Fakharian K (1996) Effect of stress paths on the behaviour of sand-steel interfaces. Can Geotech J 33:853–865. https://doi.org/10.1139/t96-116-336

    Article  Google Scholar 

  10. Gayathri VL et al (2022) Effect of snakeskin-inspired patterns on the shear response of soil-continuum interfaces. Int J Geotech Eng 16:759–775. https://doi.org/10.1080/19386362.2022.2066049

    Article  Google Scholar 

  11. Guo JK et al (2020) Effects of groove feature on shear behavior of steel-sand interface. Adv Civ Eng 2020:9593187. https://doi.org/10.1155/2020/9593187

    Article  Google Scholar 

  12. Han F et al (2018) Effects of interface roughness, particle geometry, and gradation on the sand-steel interface friction angle. J Geotech Geoenviron Eng 144:04018096. https://doi.org/10.1061/(Asce)Gt.1943-5606.0001990

    Article  Google Scholar 

  13. Hu LM, Pu JL (2004) Testing and modeling of soil-structure interface. J Geotech Geoenviron Eng 130:851–860. https://doi.org/10.1061/(Asce)1090-0241(2004)130:8(851)

    Article  Google Scholar 

  14. Huang L, Martinez A (2021) Load transfer anisotropy at snakeskin-inspired clay-structure interfaces. In: Proceedings of International Foundations Congress and Equipment Expo, IFCEE, pp. 119–129.

  15. Kou HL et al (2021) Experimental study of interface shearing between calcareous sand and steel plate considering surface roughness and particle size. Appl Ocean Res 107:102490. https://doi.org/10.1016/j.apor.2020.102490

    Article  Google Scholar 

  16. Lade PV et al (1996) Significance of particle crushing in granular materials. J Geotech Eng 122:309–316. https://doi.org/10.1061/(asce)0733-9410(1996)122:4(309)

    Article  Google Scholar 

  17. Lashkari A, Jamali V (2021) Global and local sand-geosynthetic interface behaviour. Geotechnique 71:346–367. https://doi.org/10.1680/jgeot.19.P.109

    Article  Google Scholar 

  18. Liu L et al (2019) Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Can Geotech J 56:1502–1513. https://doi.org/10.1139/cgj-2018-0007

    Article  Google Scholar 

  19. Martinez A et al (2022) Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges. Géotechnique 72:687–705. https://doi.org/10.1680/jgeot.20.P.170

    Article  Google Scholar 

  20. Martinez A, Frost JD (2017) The influence of surface roughness form on the strength of sand-structure interfaces. Geotech Lett 7:104–111. https://doi.org/10.1680/jgele.16.00169

    Article  Google Scholar 

  21. Martinez A et al (2019) Bioinspiration for anisotropic load transfer at soil-structure interfaces. J Geotech Geoenviron Eng 145:04019074. https://doi.org/10.1061/(Asce)Gt.1943-5606.0002138

    Article  Google Scholar 

  22. Marvi H, Hu DL (2012) Friction enhancement in concertina locomotion of snakes. J R Soc Interface 9:3067–3080. https://doi.org/10.1098/rsif.2012.0132

    Article  Google Scholar 

  23. Ng CWW et al (2022) Eco-geotechnics for human sustainability. Sci China Technol Sci 65:2809–2845. https://doi.org/10.1007/s11431-022-2174-9

    Article  Google Scholar 

  24. O’Hara KB, Martinez A (2020) Monotonic and cyclic frictional resistance directionality in snakeskin-inspired surfaces and piles. J Geotech Geoenviron Eng 146:04020116. https://doi.org/10.1061/(Asce)Gt.1943-5606.0002368

    Article  Google Scholar 

  25. O’Hara KB, Martinez A (2022) Load transfer directionality of snakeskin-inspired piles during installation and pullout in sands. J Geotech Geoenviron Eng 148:04022110. https://doi.org/10.1061/(asce)gt.1943-5606.0002929

    Article  Google Scholar 

  26. Peng Y et al (2021) The detailed particle breakage around the pile in coral sand. Acta Geotech 16:1971–1981. https://doi.org/10.1007/s11440-020-01089-2

    Article  Google Scholar 

  27. Peng Y et al (2023) Micromechanical analysis of the particle corner breakage effect on pile load performance in coral sand. Acta Geotech. https://doi.org/10.1007/s11440-023-01975-5

    Article  Google Scholar 

  28. Qannadizadeh A et al (2022) Laboratory investigation and constitutive modeling of the mechanical behavior of sand–grp interfaces. Acta Geotech 17:4253–4275. https://doi.org/10.1007/s11440-022-01533-5

    Article  Google Scholar 

  29. Rauthause MP et al (2020) Quantification of surface roughness using laser scanning with application to the frictional resistance of sand-timber pile interfaces. Geotech Test J 43:966–984. https://doi.org/10.1520/gtj20180384

    Article  Google Scholar 

  30. Rui S et al (2020) Monotonic behavior of interface shear between carbonate sands and steel. Acta Geotech 16:167–187. https://doi.org/10.1007/s11440-020-00987-9

    Article  Google Scholar 

  31. Rui S et al (2020) Cyclic behavior of interface shear between carbonate sand and steel. Acta Geotech 16:189–209. https://doi.org/10.1007/s11440-020-01002-x

    Article  Google Scholar 

  32. Saberi M et al (2017) Constitutive modeling of gravelly soil-structure interface considering particle breakage. J Eng Mech 143:04017044. https://doi.org/10.1061/(Asce)Em.1943-7889.0001246

    Article  Google Scholar 

  33. Saberi M et al (2016) A critical state two-surface plasticity model for gravelly soil-structure interfaces under monotonic and cyclic loading. Comput Geotech 80:71–82. https://doi.org/10.1016/j.compgeo.2016.06.011

    Article  Google Scholar 

  34. Samanta M et al (2018) Effect of roughness on interface shear behavior of sand with steel and concrete surface. Geomech Eng 14:387–398

    Google Scholar 

  35. Shahrour I, Rezaie F (1997) An elastoplastic constitutive relation for the soil-structure interface under cyclic loading. Comput Geotech 21:21–39. https://doi.org/10.1016/s0266-352x(97)00001-3

    Article  Google Scholar 

  36. Shi JQ et al (2023) Small strain stiffness of graded sands with light biocementation. Acta Geotech. https://doi.org/10.1007/s11440-023-01886-5

    Article  Google Scholar 

  37. Stutz HH, Martinez A (2021) Directionally dependent strength and dilatancy behavior of soil–structure interfaces. Acta Geotech 16:2805–2820. https://doi.org/10.1007/s11440-021-01199-5

    Article  Google Scholar 

  38. Su LJ et al (2018) Effects of relative roughness and mean particle size on the shear strength of sand-steel interface. Measurement 122:339–346. https://doi.org/10.1016/j.measurement.2018.03.003

    Article  Google Scholar 

  39. Sun Z et al (2022) Thermally induced volume change behavior of sand-clay mixtures. Acta Geotech 18:2373–2388. https://doi.org/10.1007/s11440-022-01744-w

    Article  Google Scholar 

  40. Sun ZC et al (2021) Formulation and implementation of an elastoplastic constitutive model for sand-fines mixtures. Int J Numer Anal Meth Geomech 45:2682–2708. https://doi.org/10.1002/nag.3282

    Article  Google Scholar 

  41. Uesugi M, Kishida H (1986) Frictional resistance at yield between dry sand and mild steel. Soils Found 26:139–149. https://doi.org/10.3208/sandf1972.26.4_139

    Article  Google Scholar 

  42. Wang G et al (2021) Particle breakage evolution of coral sand using triaxial compression tests. J Rock Mech Geotech Eng 13:321–334. https://doi.org/10.1016/j.jrmge.2020.06.010

    Article  Google Scholar 

  43. Wang G et al (2020) Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression. Int J Geomech 20:04020012. https://doi.org/10.1061/(Asce)Gm.1943-5622.0001601

    Article  Google Scholar 

  44. Wang HL et al (2019) Effect of grain size distribution of sandy soil on shearing behaviors at soil-structure interface. J Mater Civil Eng 31:04019238. https://doi.org/10.1061/(Asce)Mt.1943-5533.0002880

    Article  Google Scholar 

  45. Wang P, Yin ZY (2022) Effect of particle breakage on the behavior of soil-structure interface under constant normal stiffness condition with dem. Comput Geotech 147:104766. https://doi.org/10.1016/j.compgeo.2022.104766

    Article  Google Scholar 

  46. Wang X et al (2022) Particle size and confining-pressure effects of shear characteristics of coral sand: an experimental study. B Eng Geol Environ 81:97. https://doi.org/10.1007/s10064-022-02599-x

    Article  Google Scholar 

  47. Wang X et al (2019) Shear tests of interfaces between calcareous sand and steel. Mar Geores Geotechnol 37:1095–1104. https://doi.org/10.1080/1064119x.2018.1529845

    Article  Google Scholar 

  48. Wu HR et al (2023) 3d dem modeling of biocemented sand with fines as cementing agents. Int J Numer Anal Meth Geomech 47:212–240. https://doi.org/10.1002/nag.3466

    Article  Google Scholar 

  49. Wu Y et al (2021) Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from south china sea. Eng Geol 280:105932. https://doi.org/10.1016/j.enggeo.2020.105932

    Article  Google Scholar 

  50. Xiao Y et al (2020) Restraint of particle breakage by biotreatment method. J Geotech Geoenviron Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0002384

    Article  Google Scholar 

  51. Xiao Y et al (2023) Breakage critical state of gravels with different gradings. Part i: experimental results. Transp Geotech 42:101087. https://doi.org/10.1016/j.trgeo.2023.101087

    Article  Google Scholar 

  52. Xiao Y et al (2023) Breakage critical state of gravels with different gradings. Part ii: Constitutive modelling. Transp Geotech 43:101112. https://doi.org/10.1016/j.trgeo.2023.101112

    Article  Google Scholar 

  53. Xiao Y et al (2022) Evolution of particle shape produced by sand breakage. Int J Geomech 22:04022003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002333

    Article  Google Scholar 

  54. Xiao Y et al (2021) New simple breakage index for crushable granular soils. Int J Geomech 21:04021136. https://doi.org/10.1061/(Asce)Gm.1943-5622.0002091

    Article  Google Scholar 

  55. Xiao Y et al (2021) Constitutive modeling for two sands under high pressure. Int J Geomech 21:04021042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001987

    Article  Google Scholar 

  56. Xiao Y et al (2023) Acoustic emission of biocemented calcareous sand base. Int J Geomech 23:04023153. https://doi.org/10.1061/IJGNAI.GMENG-8817

    Article  Google Scholar 

  57. Xiao Y et al (2022) Fracture of interparticle micp bonds under compression. Int J Geomech. https://doi.org/10.1061/ijgnai.Gmeng-8282

    Article  Google Scholar 

  58. Yang J, Luo XD (2015) Exploring the relationship between critical state and particle shape for granular materials. J Mech Phys Solids 84:196–213. https://doi.org/10.1016/j.jmps.2015.08.001

    Article  Google Scholar 

  59. Yu FW (2023) State-dependent behavior of weathered sands incorporating progressive particle breakage in drained triaxial tests. Acta Geotech 18:3955–3976. https://doi.org/10.1007/s11440-023-01822-7

    Article  Google Scholar 

  60. Zhang G, Zhang JM (2006) Monotonic and cyclic tests of interface between structure and gravelly soil. Soils Found 46:505–518. https://doi.org/10.3208/sandf.46.505

    Article  Google Scholar 

  61. Zhang W et al (2023) A review of bio-inspired geotechnics-perspectives from geomaterials, geo-components, and drilling & excavation strategies. Biogeotechnics 1:100025. https://doi.org/10.1016/j.bgtech.2023.100025

    Article  Google Scholar 

  62. Zhao Y, Dai S (2023) Challenges of rock drilling and opportunities from bio-boring. Biogeotechnics 1:100009. https://doi.org/10.1016/j.bgtech.2023.100009

    Article  Google Scholar 

  63. Zhong WH et al (2021) Investigation of the penetration characteristics of snake skin-inspired pile using dem. Acta Geotech 16:1849–1865. https://doi.org/10.1007/s11440-020-01132-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Nature Science Foundation of China (Grant No. 52108301, 52078085); Chongqing Planning and Natural Resources Bureau (No. KJ-2021048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinquan Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Cui, H., Shi, J. et al. Shear response of calcareous sand-steel snake skin-inspired interfaces. Acta Geotech. 19, 1517–1527 (2024). https://doi.org/10.1007/s11440-023-02151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02151-5

Keywords

Navigation