Skip to main content
Log in

Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio-toxicity

通过自组装的单甲氧基聚乙二醇-聚乳酸乙醇酸嵌段共聚物共递送阿霉素和槲皮素实现协同抗肿瘤和降低心脏毒性作用

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

Quercetin (Que) is a natural multifunctional bioflavonoid, and has shown great potential for reducing adverse side effects and enhancing anti-tumor efficacy of chemotherapeutic drugs. However, its clinical application is limited due to very low solubility and structural instability in physiological systems. Herein, we co-delivered hydrophobic quercetin and hydrophilic doxorubicin (Dox) by developing a biocompatible nanocarrier comprising of an amphiphilic polymer, methoxy poly(ethylene glycol) and poly(D, L-lactide-co-glycolide), respectively. The anti-tumor and prophylactic efficacy of this system was evaluated in cellular and animal models. Our findings illustrated that the Dox-Que nanoparticulate formulation protected normal vascular endothelial cells from either free or nanoparticulate doxorubicin-induced cytotoxicity and increased cancer cell death. Compared with free doxorubicin and its nanoformulation, co-delivery of quercetin and doxorubicin using our nanosystem synergistically inhibited tumor growth, while maintaining normal levels of cardiac function indicators in serum and recovering the histopathological damages in heart tissue. This study demonstrates a promising strategy for enhancing anti-cancer drug efficacy and reducing nanoparticulate chemotherapy-induced toxicity on normal tissues.

摘要

槲皮素是一种天然的多功能生物黄酮素,具有副作用小、增强化疗药抗肿瘤疗效的潜力。但是在生理环境中,它的水溶性差、结构不稳定,限制了其在临床上的广泛应用。本文通过设计一个由两亲性聚合物甲氧基聚乙二醇和聚乙丙交酯构成的生物相容性好的纳米载体,来共递送疏水的槲皮素和亲水的阿霉素。利用体外细胞实验和动物体内肿瘤模型对该药物共递送体系的抗肿瘤和预防癌症效果进行了研究。结果表明,槲皮素-阿霉素纳米化的共递送体系可以保护正常血管内皮细胞免受未纳米化的或纳米化的阿霉素的细胞毒性作用,同时可以增强对癌细胞的杀伤作用。相比于未纳米化的和纳米化的阿霉素,本文设计的这种共递送槲皮素和阿霉素的纳米体系能更好的协同抑制肿瘤的生长,同时将血清中的各项心脏功能指标维持在正常水平。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19:670–686

    CAS  PubMed  Google Scholar 

  2. Lefrak EA, Pitha J, Rosenheim S et al (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314

    Article  CAS  PubMed  Google Scholar 

  3. Singal PK, Li T, Kumar D et al (2000) Adriamycin-induced heart failure: mechanism and modulation. Mol Cell Biochem 207:77–85

    Article  CAS  PubMed  Google Scholar 

  4. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

    Article  CAS  PubMed  Google Scholar 

  5. Shadle SE, Bammel BP, Cusack BJ et al (2000) Daunorubicin cardiotoxicity: evidence for the importance of the quinone moiety in a free-radical-independent mechanism. Biochem Pharmacol 60:1435–1444

    Article  CAS  PubMed  Google Scholar 

  6. Gutierrez PL (2000) The role of NAD(P)H oxidoreductase (DT-diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radic Biol Med 29:263–275

    Article  CAS  PubMed  Google Scholar 

  7. Lamson DW, Brignall MS (2000) Antioxidants and cancer III: quercetin. Altern Med Rev 5:196–208

    CAS  PubMed  Google Scholar 

  8. Rotelli AE, Guardia T, Juárez AO et al (2003) Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res 48:601–606

    Article  CAS  PubMed  Google Scholar 

  9. Gulati N, Laudet B, Zohrabian VM et al (2006) The antiproliferative effect of quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res 26:1177–1181

    CAS  PubMed  Google Scholar 

  10. Schlachterman A, Valle F, Wall KM et al (2008) Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model. Transl Oncol 1:19–27

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaiserova H, Simunek T, van der Vijgh WJ et al (2007) Flavonoids as protectors against doxorubicin cardiotoxicity: role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochim Biophys Acta 1772:1065–1074

    Article  CAS  PubMed  Google Scholar 

  12. Mendoza EE, Burd R (2011) Quercetin as a systemic chemopreventative agent: structural and functional mechanisms. Mini Rev Med Chem 11:1216–1221

    CAS  PubMed  Google Scholar 

  13. Angeloni C, Spencer JPE, Leoncini E et al (2007) Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie 89:73–82

    Article  CAS  PubMed  Google Scholar 

  14. Choi YJ, Jeong YJ, Lee YJ et al (2005) (-)Epigallocatechin gallate and quercetin enhance survival signaling in response to oxidant-induced human endothelial apoptosis. J Nutr 135:707–713

    CAS  PubMed  Google Scholar 

  15. Dong Q, Chen L, Lu Q et al (2014) Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. Br J Pharmacol 171:4440–4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325

    Article  CAS  PubMed  Google Scholar 

  17. Du G, Lin H, Yang Y et al (2010) Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. Int Immunopharmacol 10:819–826

    Article  CAS  PubMed  Google Scholar 

  18. Staedler D, Idrizi E, Kenzaoui BH et al (2011) Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol 68:1161–1172

    Article  CAS  PubMed  Google Scholar 

  19. Fang R, Jing H, Chai Z et al (2011) Design and characterization of protein-quercetin bioactive nanoparticles. J Nanobiotechnol 9:19

    Article  CAS  Google Scholar 

  20. Gugler R, Leschik M, Dengler HJ (1975) Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharmacol 9:229–234

    Article  CAS  PubMed  Google Scholar 

  21. Wu C, Shi L, Wu C et al (2014) Enhanced in vitro anticancer activity of quercetin mediated by functionalized CdTe QDs. Sci China Chem 57:1579–1588

    Article  MathSciNet  CAS  Google Scholar 

  22. Graefe EU, Wittig J, Mueller S et al (2001) Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol 41:492–499

    Article  CAS  PubMed  Google Scholar 

  23. Li YL, Deng YB, Tian X et al (2015) Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor. ACS Nano 9:9626–9637

    Article  CAS  PubMed  Google Scholar 

  24. Guo M, Mao HJ, Li YL et al (2014) Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35:4656–4666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Danhier F, Ansorena E, Silva JM et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  PubMed  Google Scholar 

  26. Jokerst JV, Lobovkina T, Zare RN et al (2011) Nanoparticle pegylation for imaging and therapy. Nanomedicine 6:715–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao R, Wang H, Ji T et al (2015) Biodegradable cationic ε-poly-L-lysine-conjugated polymeric nanoparticles as a new effective antibacterial agent. Sci Bull 60:216–226

    Article  CAS  Google Scholar 

  28. Wang H, Zhao Y, Wu Y et al (2011) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG–PLGA copolymer nanoparticles. Biomaterials 32:8281–8290

    Article  CAS  PubMed  Google Scholar 

  29. Bovelli D, Plataniotis G, Roila F (2010) Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol 21:v277–v282

    Article  PubMed  Google Scholar 

  30. Alexis F, Pridgen E, Molnar LK et al (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schimmel KJM, Richel DJ, van den Brink RBA et al (2004) Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev 30:181–191

    Article  CAS  PubMed  Google Scholar 

  32. Hanson JA, Chang CB, Graves SM et al (2008) Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455:85–88

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Abou El Hassan MAI, Verheul HMW, Jorna AS et al (2003) The new cardioprotector monohydroxyethylrutoside protects against doxorubicin-induced inflammatory effects in vitro. Br J Cancer 89:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bruynzeel AME, Abou El Hassan MA, Torun E et al (2007) Caspase-dependent and -independent suppression of apoptosis by monoher in doxorubicin treated cells. Br J Cancer 96:450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keizer HG, Pinedo HM, Schuurhuis GJ et al (1990) Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol Ther 47:219–231

    Article  CAS  PubMed  Google Scholar 

  36. Koti BC, Nagathan S, Vishwanathswamy A et al (2013) Cardioprotective effect of vedic guard against doxorubicin-induced cardiotoxicity in rats: a biochemical, electrocardiographic, and histopathological study. Pharm Mag 9:176–181

    Article  Google Scholar 

  37. Lorenzo E, Ruiz-Ruiz C, Quesada AJ et al (2002) Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism. J Biol Chem 277:10883–10892

    Article  CAS  PubMed  Google Scholar 

  38. Harwood M, Danielewska-Nikiel B, Borzelleca JF et al (2007) A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol 45:2179–2205

    Article  CAS  PubMed  Google Scholar 

  39. Chao CL, Hou YC, Lee Chao PD et al (2009) The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. Br J Nutr 101:1165–1170

    Article  CAS  PubMed  Google Scholar 

  40. Choi YJ, Kang JS, Park JHY et al (2003) Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide-treated human vascular endothelial cells. J Nutr 133:985–991

    CAS  PubMed  Google Scholar 

  41. Vinod BS, Maliekal TT, Anto RJ (2013) Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid Redox Signal 18:1307–1348

    Article  CAS  PubMed  Google Scholar 

  42. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2012CB934004), the National Funds for Distinguished Young Scientists (31325010), the Key Research Program of the Chinese Academy of Sciences (KGZD-EW-T06) and the National Natural Science Foundation of China (31300822).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangjun Nie or Yuliang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 187 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, W.A., Zhao, R., Wang, H. et al. Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio-toxicity. Sci. Bull. 61, 1689–1698 (2016). https://doi.org/10.1007/s11434-016-1182-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1182-z

Keywords

关键词

Navigation