Skip to main content
Log in

A label-free colorimetric assay for detection of c-Myc mRNA based on peptide nucleic acid and silver nanoparticles

利用肽核酸和纳米银免标记比色检测原癌基因c-Myc mRNA

  • Article
  • Chemistry
  • Published:
Science Bulletin

Abstract

A label-free colorimetric protocol based on peptide nucleic acid/silver nanoparticles (PNA/AgNPs) has been initially proposed for specific recognition of mRNA. Making use of the controlled silver nanoparticles aggregation/dispersion by PNA/PNA–RNA complex, proto-oncogene c-Myc mRNA detection can be achieved. Moreover, the PNA/AgNPs platform can undergo color change in response to target c-Myc mRNA with single-base-mismatch sensitivity, which could further help in visually identify single nucleotide differences in target genes.

摘要

摘要 PNA具有较强的银纳米聚集能力,与核酸靶标RNA形成的双链能使团聚的银纳米再次得到分散。基于该原理,本文利用纳米银和PNA构建了一种灵敏的免标记比色检测原癌基因c-myc mRNA的方法。该方法简单、快速、成本低、纳摩尔级的样品无需仪器就可以观察到颜色的变化,而且还可以区分与靶标单个碱基错配的情况,有望在生物临床领域得到进一步广泛应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang RC, Chiu WJ, Li YJ et al (2014) Detection of microRNA in tumor cells using exonuclease III and graphene oxide regulated signal amplification. ACS Appl Mater Interfaces 6:21780–21787

    Article  Google Scholar 

  2. Kauraniemi P, Bärlund M, Monni O et al (2001) New amplified and highly expressed genes discovered in the ERBB2 applicant in breast cancer by cDNA microarrays. Cancer Res 61:8235–8240

    Google Scholar 

  3. Stephen SW, Yeung TM, Hsing IM (2008) Electrochemistry based real-time PCR on a microchip. Anal Chem 80:363–368

    Article  Google Scholar 

  4. Wu MS, Qian GS, Xu JJ et al (2012) Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode. Anal Chem 84:5407–5414

    Article  Google Scholar 

  5. Wu Y, Kwak KJ, Agarwal K et al (2013) Detection of extracellular RNAs in cancer and viral infection via tethered cationic lipoplex nanoparticles containing molecular beacons. Anal Chem 85:11265–11274

    Article  Google Scholar 

  6. Cao YW, Jin RC, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962

    Article  Google Scholar 

  7. Valentini P, Pompa PP (2013) Gold nanoparticles for naked-eye DNA detection: smart designs for sensitive assays. RSC Adv 3:19181–19190

    Article  Google Scholar 

  8. Cao W, Wang XW, Fan HH et al (2015) Fabrication of superstable gold nanorod–carbon nanocapsule as a molecule loading material. Sci Bull 60:1101–1107

    Article  Google Scholar 

  9. Zhao F, Hu B (2015) Cancer therapy may get a boost from gold nanorods. Sci Bull 60:279–280

    Article  Google Scholar 

  10. Zhang X, Mark RS, Liu JW (2012) Fast pH-assisted functionalization of silver nanoparticles with monothiolated DNA. Chem Commun 48:10114–10116

    Article  Google Scholar 

  11. Li H, Zhu Y, Dong SY et al (2014) Fast functionalization of silver decahedral nanoparticles with aptamers for colorimetric detection of human platelet-derived growth factor-BB. Anal Chim Acta 829:48–53

    Article  Google Scholar 

  12. Li H, Sun Z, Zhong W et al (2010) Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates. Anal Chem 82:5477–5483

    Article  Google Scholar 

  13. Li H, Chen CY, Wei W et al (2012) Highly sensitive detection of proteins based on metal-enhanced fluorescence with novel silver nanostructures. Anal Chem 84:8656–8662

    Article  Google Scholar 

  14. Lee JS, Lytton-Jean AK, Hurst SJ et al (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115

    Article  Google Scholar 

  15. Su XD, Kanjanawarut R (2009) Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and its application for colorimetric DNA detection. ACS Nano 3:2751–2759

    Article  Google Scholar 

  16. Nielsen PE (1998) Structural and biological properties of peptide nucleic acid (PNA). Pure Appl Chem 70:105–110

    Article  Google Scholar 

  17. Nielsen PE, Haaima G (1997) Peptide nucleic acid (PNA), A DNA mimic with a pseudopeptide backbone. Chem Soc Rev 26:73–78

    Article  Google Scholar 

  18. Joshi VG, Chindera K, Singh AK et al (2013) Rapid label-free visual assay for the detection and quantification of viral RNA using peptide nucleic acid and gold nanoparticles. Anal Chim Acta 795:1–7

    Article  Google Scholar 

  19. Komiyama M, Ye S, Liang XG et al (2003) PNA for one-base differentiating protection of DNA from nuclease and its use for SNPs detection. J Am Chem Soc 125:3758–3762

    Article  Google Scholar 

  20. Duy J, Smith RL, Collins S et al (2014) A field deployable colorimetric bioassay for the rapid and specific detection of ribosomal RNA. Biosens Bioelectron 52:433–437

    Article  Google Scholar 

  21. Pocsfalvi G, Votta G, Vincenzo AD et al (2011) Analysis of secretome changes uncovers an autocrine/paracrine component in the modulation of cell proliferation and motility by c-Myc. J Proteome Res 10:5326–5337

    Article  Google Scholar 

  22. Mehndiratta M, Palanichamy JK, Bhagat M et al (2011) CpG hypermethylation of the c-Myc promoter by dsRNA results in growth suppression. Mol Pharm 8:2302–2309

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (21305058, 21205056, 21075058 and 21503104) and Tai-Shan Scholar Research Fund of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Feng Liu or Chen-Zhong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1548 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Song, J., Chen, BL. et al. A label-free colorimetric assay for detection of c-Myc mRNA based on peptide nucleic acid and silver nanoparticles. Sci. Bull. 61, 276–281 (2016). https://doi.org/10.1007/s11434-016-1004-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1004-3

Keywords

关键词

Navigation