Skip to main content

RNA Quantification Using Noble Metal Nanoprobes: Simultaneous Identification of Several Different mRNA Targets Using Color Multiplexing and Application to Cancer Diagnostics

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 906))

Abstract

Nanotechnology provides new tools for gene expression analysis that allow for sensitive and specific characterization of prognostic signatures related to cancer. Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus allows for a more accurate indication of degree of cancerous activity than either locus alone. Metal nanoparticles have been widely used as labels for in vitro identification and quantification of target sequences. Here we describe the synthesis of nanoparticles with different noble metal compositions in an alloy format that are then functionalized with thiol-modified ssDNA (nanoprobes). We also show how to use such nanoprobes in a non-cross-linking colorimetric method for the direct detection and quantification of specific mRNA targets, without the need for enzymatic amplification or reverse transcription steps. The different metals in the alloy provide for distinct absorption spectra due to their characteristic plasmon resonance peaks. The color multiplexing allows for simultaneous identification of several different mRNA targets involved in cancer development. Comparison of the absorption spectra of the nanoprobes mixtures taken before and after induced aggregation of metal nanoparticles allows to both identify and quantify each mRNA target. We describe the use of gold and gold:silver-alloy nanoprobes for the development of the non-cross-linking method to detect a specific BCR–ABL fusion gene (e.g., e1a2 and e14a2) mRNA target associated with chronic myeloid leukemia (CML) using 10 ng μL−1 of unamplified total human RNA. This simple methodology takes less than 50 min to complete after total RNA extraction with comparable specificity and sensitivity to the more commonly used methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  2. Weis JH et al (1992) Detection of rare mRNAs via quantitative RT-PCR. Trends Genet 8:263–264

    Article  PubMed  CAS  Google Scholar 

  3. Freeman WM, Walker SJ, Vrana KE (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26:112–115

    PubMed  CAS  Google Scholar 

  4. http://nano.cancer.gov/about/plan/ Accessed 11 May 2012

  5. Baptista P et al (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    Article  PubMed  CAS  Google Scholar 

  6. Sato K, Hosokawa K, Maeda M (2005) Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions. Nucleic Acids Res 33:e4

    Article  PubMed  Google Scholar 

  7. Mirkin CA et al (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  PubMed  CAS  Google Scholar 

  8. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    Article  PubMed  CAS  Google Scholar 

  9. Qin WJ, Yung LY (2007) Nanoparticle-based detection and quantification of DNA with single nucleotide polymorphism (SNP) discrimination selectivity. Nucleic Acids Res 35:e111

    Article  PubMed  Google Scholar 

  10. Elghanian R et al (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  PubMed  CAS  Google Scholar 

  11. Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103

    Article  PubMed  CAS  Google Scholar 

  12. Storhoff JJ et al (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22:883–887

    Article  PubMed  CAS  Google Scholar 

  13. Wilcoxon J (2009) Optical absorption properties of dispersed gold and silver alloy nanoparticles. J Phys Chem B 113:2647–2656

    Article  PubMed  CAS  Google Scholar 

  14. Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  PubMed  CAS  Google Scholar 

  15. Baptista P et al (2005) Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 119:111–117

    Article  PubMed  CAS  Google Scholar 

  16. Doria G, Franco R, Baptista P (2007) Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/­mutation detection. IET Nanobiotechnol 1:53–57

    Article  PubMed  CAS  Google Scholar 

  17. Conde J, de la Fuente JM, Baptista PV (2010) RNA quantification using gold nanoprobes—application to cancer diagnostics. J Nano­biotechnology 8:5

    Article  PubMed  Google Scholar 

  18. Veigas B et al (2010) Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis. Nanotechnology 21:415101

    Article  PubMed  Google Scholar 

  19. Baptista PV et al (2006) Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem 52:1433–1434

    Article  PubMed  CAS  Google Scholar 

  20. Costa P et al (2010) Gold nanoprobes assay for identification of mycobacteria from the Mycobacterium tuberculosis complex. Clin Microbiol Infect 16:1464–1469

    Article  PubMed  CAS  Google Scholar 

  21. Doria G et al (2010) Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection. Nanotechnology 21:255101

    Article  PubMed  CAS  Google Scholar 

  22. Hehlmann R, Hochhaus A, Baccarani M (2007) Chronic myeloid leukaemia. Lancet 370:342–350

    Article  PubMed  CAS  Google Scholar 

  23. Shet AS, Jahagirdar BN, Verfaillie CM (2002) Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 16:1402–1411

    Article  PubMed  CAS  Google Scholar 

  24. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5:172–183

    Article  PubMed  CAS  Google Scholar 

  25. Melo JV, Hughes TP, Apperley JF (2003) Chronic myeloid leukemia. Hematology Am Soc Hematol Educ Program 132–152

    Google Scholar 

  26. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  27. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–537

    PubMed  CAS  Google Scholar 

  28. Doria G et al (2010) Optimizing Au-nanoprobes for specific sequence discrimination. Colloids Surf B 77:122–124

    Article  CAS  Google Scholar 

  29. Parsons PW, Estrada FJ (1942) Changes in volume on mixing solutions. Ind Eng Chem 34:949–952

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Viana Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Conde, J., Doria, G., de la Fuente, J.M., Baptista, P.V. (2012). RNA Quantification Using Noble Metal Nanoprobes: Simultaneous Identification of Several Different mRNA Targets Using Color Multiplexing and Application to Cancer Diagnostics. In: Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 906. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-953-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-953-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-952-5

  • Online ISBN: 978-1-61779-953-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics