Skip to main content
Log in

Strain-enhanced polarization sensitivity in β-Ga2O3 photodetector

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Polarization-sensitive photodetection and imaging have great application value in fields such as polarization division multiplexing optical communication, remote sensing, near-field imaging and military monitoring. Pursuing a high polarization ratio has always been the research hotspot in polarization-sensitive photodetectors. In this paper, we report a compression strain enhanced polarization ratio in β-gallium oxide (β-Ga2O3) single crystal flake. A rigorous crystallographic analysis confirmed its high crystalline quality and orientation. Angle-resolved polarization Raman spectroscopy (ARPRS) was adopted to study the anisotropy of its optical properties. Extensive ARPRS measurements and theoretical calculation consistently demonstrate the strong optical anisotropy in the high-quality β-Ga2O3 flake. A polarization ratio of 0.96 was obtained in the flat β-Ga2O3 flake. Furthermore, mechanical strain of ±0.7% was introduced into β-Ga2O3. An increased polarization ratio of 0.98 was achieved in the case of 0.7% compression strain, which is, to the best of our knowledge, the highest value for UVC polarization-sensitive photodetectors. That corresponds to an improved polarization rejection ratio of 100. This work proposed a new path towards improving polarization sensitivity by applying strain engineering in the active material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vavoulas, H. G. Sandalidis, N. D. Chatzidiamantis, Z. Xu, and G. K. Karagiannidis, IEEE Commun. Surv. Tut. 21, 2111 (2019).

    Article  Google Scholar 

  2. K. Sasagawa, R. Okada, M. Haruta, H. Takehara, H. Tashiro, and J. Ohta, IEEE Trans. Electron Dev. 69, 2924 (2022).

    Article  ADS  CAS  Google Scholar 

  3. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science 293, 1455 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Y. Zhang, Z. Wang, and F. Xing, Microelectron. Eng. 242–243, 111555 (2021).

    Article  Google Scholar 

  5. R. M. Matchko, and G. R. Gerhart, Opt. Eng. 47, 016001 (2008).

    Article  ADS  Google Scholar 

  6. Z. Li, B. Xu, D. Liang, and A. Pan, Research 2020, 5464258 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. D. Zhang, Q. Wang, X. Y. Hou, L. X. Zhao, Z. Wang, Y. D. Gu, F. Zhang, Z. A. Ren, G. F. Chen, N. Hao, and L. Shan, Sci. China-Phys. Mech. Astron. 66, 297411 (2023).

    Article  ADS  Google Scholar 

  8. Z. M. Wei, and J. B. Xia, Acta Phys. Sin. 68, 163201 (2019).

    Article  Google Scholar 

  9. W. Fang, Q. Li, J. Li, Y. Li, Q. Zhang, R. Chen, M. Wang, F. Yun, and T. Wang, Crystals 13, 915 (2023).

    Article  CAS  Google Scholar 

  10. S. Cui, Z. Mei, Y. Hou, M. Sun, Q. Chen, H. Liang, Y. Zhang, X. Bai, and X. Du, Sci. China-Phys. Mech. Astron. 61, 107021 (2018).

    Article  ADS  Google Scholar 

  11. G. Shen, Z. Liu, C. K. Tan, M. Jiang, S. Li, Y. Guo, and W. Tang, Appl. Phys. Lett. 123, 041103 (2023).

    Article  ADS  CAS  Google Scholar 

  12. Z. Liu, S. L. Sha, G. H. Shen, M. M. Jiang, M. L. Zhang, Y. F. Guo, and W. H. Tang, IEEE Electron Dev. Lett. 44, 1324 (2023).

    Article  ADS  CAS  Google Scholar 

  13. Y. Zou, Y. Zeng, P. Tan, X. Zhao, X. Zhou, X. Hou, Z. Zhang, M. Ding, S. Yu, H. Huang, Q. He, X. Ma, G. Xu, Q. Hu, and S. Long, in 2022 International Electron Devices Meeting (IEDM) (IEEE, San Francisco, 2022), pp. 19.5.1–19.5.4.

    Chapter  Google Scholar 

  14. Q. Zhang, D. Dong, T. Zhang, T. Zhou, Y. Yang, Y. Tang, J. Shen, T. Wang, T. Bian, F. Zhang, W. Luo, Y. Zhang, and Z. Wu, ACS Nano 17, 24033 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Qu, Z. Wu, M. Ai, D. Guo, Y. An, H. Yang, L. Li, and W. Tang, J. Alloys Compd. 680, 247 (2016).

    Article  CAS  Google Scholar 

  16. N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 71, 933 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, Appl. Phys. Lett. 106, 111909 (2015).

    Article  ADS  Google Scholar 

  18. A. S. Grashchenko, S. A. Kukushkin, V. I. Nikolaev, A. V. Osipov, E. V. Osipova, and I. P. Soshnikov, Phys. Solid State 60, 852 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Y. Zhang, A. Mauze, and J. S. Speck, Appl. Phys. Lett. 115, 013501 (2019).

    Article  ADS  Google Scholar 

  20. X. Chen, W. Mu, Y. Xu, B. Fu, Z. Jia, F. F. Ren, S. Gu, R. Zhang, Y. Zheng, X. Tao, and J. Ye, ACS Appl. Mater. Interfaces 11, 7131 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. S. K. Barman, and M. N. Huda, Phys. Status Solidi RRL 13, 1800554 (2019).

    Article  Google Scholar 

  22. K. Vimalanathan, T. Palmer, Z. Gardner, I. Ling, S. Rahpeima, S. Elmas, J. R. Gascooke, C. T. Gibson, Q. Sun, J. Zou, M. R. Andersson, N. Darwish, and C. L. Raston, Nanoscale Adv. 3, 5785 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Y. Zhang, and F. Xing, J. Semicond. 44, 071801 (2023).

    Article  ADS  Google Scholar 

  24. C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  25. N. Zhang, I. M. Kislyakov, C. Xia, H. Qi, J. Wang, and H. F. Mohamed, Opt. Express 29, 18587 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Q. Chen, Y. Zhang, T. Zheng, Z. Liu, L. Wu, Z. Wang, and J. Li, Nanoscale Adv. 2, 2705 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Li, Z. Shi, L. Wang, Y. Chen, W. Liang, D. Wu, X. Li, Y. Zhang, C. Shan, and X. Fang, Mater. Horiz. 7, 1613 (2020).

    Article  CAS  Google Scholar 

  28. X. L. Liu, X. Zhang, M. L. Lin, and P. H. Tan, Chin. Phys. B 26, 067802 (2017).

    Article  ADS  Google Scholar 

  29. T. Onuma, S. Fujioka, T. Yamaguchi, Y. Itoh, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, J. Cryst. Growth 401, 330 (2014).

    Article  ADS  CAS  Google Scholar 

  30. R. Rao, A. M. Rao, B. Xu, J. Dong, S. Sharma, and M. K. Sunkara, J. Appl. Phys. 98, 094312 (2005).

    Article  ADS  Google Scholar 

  31. E. Swinnich, M. N. Hasan, K. Zeng, Y. Dove, U. Singisetti, B. Mazumder, and J. Seo, Adv. Elect. Mater. 5, 1800714 (2019).

    Article  Google Scholar 

  32. S. Yan, Z. Ding, X. Zhou, Z. Jia, W. Mu, Q. Xin, X. Tao, and A. Song, Appl. Surf. Sci. 610, 155318 (2023).

    Article  CAS  Google Scholar 

  33. Y. Liu, Y. Jiang, C. Tan, Y. Li, Y. Chen, Z. Li, L. Gao, L. Yang, and Z. Wang, Phys. Status Solidi RRL 17, 2300101 (2023).

    Article  CAS  Google Scholar 

  34. D. Van Truong, T. T. Quang, N. H. Linh, N. Van Hoi, and V. Van Thanh, Integrated Ferroelectrics 232, 186 (2023).

    Article  ADS  CAS  Google Scholar 

  35. V. I. Vasyltsiv, Y. I. Rym, and Y. M. Zakharko, Phys. Status Solidi (b) 195, 653 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Y. Yang, S. C. Liu, X. Wang, Z. Li, Y. Zhang, G. Zhang, D. J. Xue, and J. S. Hu, Adv. Funct. Mater. 29, 1900411 (2019).

    Article  Google Scholar 

  37. L. Li, W. Gao, H. Chen, K. Zhao, P. Wen, Y. Yang, X. Wang, Z. Wei, N. Huo, and J. Li, Adv. Elect. Mater. 6, 1901441 (2020).

    Article  CAS  Google Scholar 

  38. G. Tabares, A. Hierro, B. Vinter, and J. M. Chauveau, Appl. Phys. Lett. 99, 071108 (2011).

    Article  ADS  Google Scholar 

  39. Z. M. Liao, J. Xu, J. M. Zhang, and D. P. Yu, Chin. Phys. Lett. 25, 2622 (2008).

    Article  ADS  CAS  Google Scholar 

  40. Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, Appl. Phys. Lett. 85, 6128 (2004).

    Article  ADS  CAS  Google Scholar 

  41. C. Rivera, J. L. Pau, E. Muñoz, P. Misra, O. Brandt, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 88, 213507 (2006).

    Article  ADS  Google Scholar 

  42. S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, and C. Zhou, Chem. Phys. Lett. 389, 176 (2004).

    Article  ADS  CAS  Google Scholar 

  43. Y. Yang, S. C. Liu, W. Yang, Z. Li, Y. Wang, X. Wang, S. Zhang, Y. Zhang, M. Long, G. Zhang, D. J. Xue, J. S. Hu, and L. J. Wan, J. Am. Chem. Soc. 140, 4150 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Y. Yan, W. Xiong, S. Li, K. Zhao, X. Wang, J. Su, X. Song, X. Li, S. Zhang, H. Yang, X. Liu, L. Jiang, T. Zhai, C. Xia, J. Li, and Z. Wei, Adv. Opt. Mater. 7, 1900622 (2019).

    Article  CAS  Google Scholar 

  45. Y. Zhou, J. Luo, Y. Zhao, C. Ge, C. Wang, L. Gao, C. Zhang, M. Hu, G. Niu, and J. Tang, Adv. Opt. Mater. 6, 1800679 (2018).

    Article  Google Scholar 

  46. A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, Nano Lett. 7, 2999 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. X. Wang, K. Wu, M. Blei, Y. Wang, L. Pan, K. Zhao, C. Shan, M. Lei, Y. Cui, B. Chen, D. Wright, W. Hu, S. Tongay, and Z. Wei, Adv. Elect. Mater. 5, 1900419 (2019).

    Article  Google Scholar 

  48. D. Liu, J. Hong, X. Wang, X. Li, Q. Feng, C. Tan, T. Zhai, F. Ding, H. Peng, and H. Xu, Adv. Funct. Mater. 28, 1804696 (2018).

    Article  Google Scholar 

  49. L. Gao, K. Zeng, J. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. Song, G. Niu, and J. Tang, Nano Lett. 16, 7446 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. R. Huang, D. H. Lin, J. Y. Liu, C. Y. Wu, D. Wu, and L. B. Luo, Sci. China Mater. 64, 2497 (2021).

    Article  CAS  Google Scholar 

  51. J. Ding, X. Cheng, L. Jing, T. Zhou, Y. Zhao, and S. Du, ACS Appl. Mater. Interfaces 10, 845 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. J. Wu, X. Zhang, Z. Wang, L. Liang, X. Niu, Q. Guan, S. You, and J. Luo, Mater. Horiz. 10, 952 (2023).

    Article  PubMed  Google Scholar 

  53. F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R. H. He, C. Kloc, P. M. Ajayan, and Z. Liu, Adv. Funct. Mater. 26, 1169 (2016).

    Article  CAS  Google Scholar 

  54. S. Liu, W. Xiao, M. Zhong, L. Pan, X. Wang, H. X. Deng, J. Liu, J. Li, and Z. Wei, Nanotechnology 29, 184002 (2018).

    Article  ADS  PubMed  Google Scholar 

  55. Z. Guo, R. Cao, H. Wang, X. Zhang, F. Meng, X. Chen, S. Gao, D. K. Sang, T. H. Nguyen, A. T. Duong, J. Zhao, Y. J. Zeng, S. Cho, B. Zhao, P. H. Tan, H. Zhang, and D. Fan, Natl. Sci. Rev. 9, nwab098 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. L. Li, P. Gong, D. Sheng, S. Wang, W. Wang, X. Zhu, X. Shi, F. Wang, W. Han, S. Yang, K. Liu, H. Li, and T. Zhai, Adv. Mater. 30, 1804541 (2018).

    Article  Google Scholar 

  57. W. Ran, Z. Ren, P. Wang, Y. Yan, K. Zhao, L. Li, Z. Li, L. Wang, J. Yang, Z. Wei, Z. Lou, and G. Shen, Nat. Commun. 12, 6476 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Yang, C. Hu, M. Wu, W. Shen, S. Tongay, K. Wu, B. Wei, Z. Sun, C. Jiang, L. Huang, and Z. Wang, ACS Nano 12, 8798 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. T. Hong, B. Chamlagain, T. Wang, H. J. Chuang, Z. Zhou, and Y. Q. Xu, Nanoscale 7, 18537 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, Nat. Nanotech. 10, 707 (2015).

    Article  ADS  CAS  Google Scholar 

  61. Y. Hou, H. Liang, A. Tang, X. Du, and Z. Mei, Appl. Phys. Lett. 118, 063501 (2021).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghui Zhang, Yuping Sun or Zengxia Mei.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61505109, 12174275, 62174113, and 11974108), Youth Innovative Talents Attracting and Cultivating Plan of Colleges and Universities in Shandong Province (No. 21), Youth Innovation Team of Colleges and Universities in Shandong Province (Grant No. 2022KJ223), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515110607), and Shandong Provincial Natural Science Foundation (Grant Nos. ZR2021QF020, ZR2022QF055, and ZR2021QE080).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Strain-enhanced polarization sensitivity in β-Ga2O3 photodetector

Supplementary material, approximately 7.02 MB.

Supplementary material, approximately 5.96 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liang, H., Xing, F. et al. Strain-enhanced polarization sensitivity in β-Ga2O3 photodetector. Sci. China Phys. Mech. Astron. 67, 247312 (2024). https://doi.org/10.1007/s11433-023-2307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2307-6

Navigation