Skip to main content
Log in

Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol

  • Short Communication
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In a recent article [Gao et al., Sci. China-Phys. Mech. Astron. 63, 120311 (2020)], a two-receiver measurement-device-independent quantum secret sharing (MDI-QSS) protocol was presented. It was proven to be secure against eavesdropping and generalized to the multireceiver case. However, the participant attack is a fatal threat to QSS protocols. Here, we highlight that a dishonest participant can obtain a sender’s secret message alone without introducing any detectable error, evidencing the vulnerability of the MDI-QSS protocol to the participant attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999), arXiv: quant-ph/9806063.

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Karlsson, M. Koashi, and N. Imoto, Phys. Rev. A 59, 162 (1999).

    Article  ADS  Google Scholar 

  3. R. Cleve, D. Gottesman, and H. K. Lo, Phys. Rev. Lett. 83, 648 (1999), arXiv: quant-ph/9901025.

    Article  ADS  Google Scholar 

  4. D. Gottesman, Phys. Rev. A 61, 042311 (2000), arXiv: quant-ph/9910067.

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Tyc, and B. C. Sanders, Phys. Rev. A 65, 042310 (2002), arXiv: quant-ph/0107074.

    Article  ADS  Google Scholar 

  6. G. P. Guo, and G. C. Guo, Phys. Lett. A 310, 247 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  7. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003), arXiv: quant-ph/0308173.

    Article  ADS  Google Scholar 

  8. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, Phys. Rev. Lett. 92, 177903 (2004), arXiv: quant-ph/0311015.

    Article  ADS  Google Scholar 

  9. L. Xiao, G. Lu Long, F. G. Deng, and J. W. Pan, Phys. Rev. A 69, 052307 (2004), arXiv: quant-ph/0405179.

    Article  ADS  Google Scholar 

  10. Y. Li, K. Zhang, and K. Peng, Phys. Lett. A 324, 420 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  11. F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004), arXiv: quant-ph/0405177.

    Article  ADS  Google Scholar 

  12. M. Lucamarini, and S. Mancini, Phys. Rev. Lett. 94, 140501 (2005), arXiv: quant-ph/0405083.

    Article  ADS  Google Scholar 

  13. Z. J. Zhang, Y. Li, and Z. X. Man, Phys. Rev. A 71, 044301 (2005), arXiv: quant-ph/0412203.

    Article  ADS  MathSciNet  Google Scholar 

  14. Z. J. Zhang, Phys. Lett. A 342, 60 (2005), arXiv: quant-ph/0403221.

    Article  ADS  Google Scholar 

  15. F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, Phys. Rev. A 72, 044302 (2005), arXiv: quant-ph/0506194.

    Article  ADS  Google Scholar 

  16. P. Xue, K. Wang, and X. Wang, Sci. Rep. 7, 45928 (2017).

    Article  ADS  Google Scholar 

  17. Y. Xiang, I. Kogias, G. Adesso, and Q. He, Phys. Rev. A 95, 010101 (2017), arXiv: 1603.08173.

    Article  ADS  Google Scholar 

  18. I. Kogias, Y. Xiang, Q. He, and G. Adesso, Phys. Rev. A 95, 012315 (2017), arXiv: 1603.03224.

    Article  ADS  Google Scholar 

  19. X. Yang, K. Wei, H. Ma, H. Liu, Z. Yin, Z. Cao, and L. Wu, Sci. Rep. 8, 5728 (2018).

    Article  ADS  Google Scholar 

  20. C. Y. Huang, N. Lambert, C. M. Li, Y. T. Lu, and F. Nori, Phys. Rev. A 99, 012302 (2019), arXiv: 1812.03251.

    Article  ADS  Google Scholar 

  21. M. Habibidavijani, and B. C. Sanders, New J. Phys. 21, 113023 (2019).

    Article  MathSciNet  Google Scholar 

  22. V. Lipinska, G. Murta, J. Ribeiro, and S. Wehner, Phys. Rev. A 101, 032332 (2020), arXiv: 1911.09470.

    Article  ADS  MathSciNet  Google Scholar 

  23. X. Wu, Y. Wang, and D. Huang, Phys. Rev. A 101, 022301 (2020).

    Article  ADS  Google Scholar 

  24. V. Makarov, New J. Phys. 11, 065003 (2009).

    Article  ADS  Google Scholar 

  25. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon. 4, 686 (2010), arXiv: 1008.4593.

    Article  ADS  Google Scholar 

  26. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Opt. Express 18, 27938 (2010), arXiv: 1009.2663.

    Article  ADS  Google Scholar 

  27. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, Nat. Commun. 2, 349 (2011), arXiv: 1011.0105.

    Article  ADS  Google Scholar 

  28. H. Qin, R. Kumar, V. Makarov, and R. Alléaume, Phys. Rev. A 98, 012312 (2018).

    Article  Google Scholar 

  29. Z. K. Gao, T. Li, and Z. H. Li, Sci. China-Phys. Mech. Astron. 63, 120311 (2020).

    Article  ADS  Google Scholar 

  30. H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012), arXiv: 1109.1473.

    Article  ADS  Google Scholar 

  31. H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, Phys. Rev. Lett. 117, 190501 (2016), arXiv: 1606.06821.

    Article  ADS  Google Scholar 

  32. Y. Cao, Y. H. Li, K. X. Yang, Y. F. Jiang, S. L. Li, X. L. Hu, M. Abulizi, C. L. Li, W. Zhang, Q. C. Sun, W. Y. Liu, X. Jiang, S. K. Liao, J. G. Ren, H. Li, L. You, Z. Wang, J. Yin, C. Y. Lu, X. B. Wang, Q. Zhang, C. Z. Peng, and J. W. Pan, Phys. Rev. Lett. 125, 260503 (2020), arXiv: 2006.05088.

    Article  ADS  Google Scholar 

  33. X. D. Wu, Y. J. Wang, D. Huang, and Y. Guo, Front. Phys. 15, 31601 (2020).

    Article  ADS  Google Scholar 

  34. Z.-X. Cui, W. Zhong, L. Zhou, and Y.-B. Sheng, Sci. China-Phys. Mech. Astron. 62, 110311 (2019).

    Article  ADS  Google Scholar 

  35. Y. F. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Front. Phys. 16, 11501 (2021), arXiv: 2009.09555.

    Article  ADS  Google Scholar 

  36. Y. Fu, H. L. Yin, T. Y. Chen, and Z. B. Chen, Phys. Rev. Lett. 114, 090501 (2015), arXiv: 1412.0832.

    Article  ADS  Google Scholar 

  37. L. Zhao, Z. Yin, S. Wang, W. Chen, H. Chen, G. Guo, and Z. Han, Phys. Rev. A 92, 062327 (2015), arXiv: 1512.09269.

    Article  ADS  Google Scholar 

  38. L. Y. Zhao, Z. Q. Yin, W. Chen, Y. J. Qian, C. M. Zhang, G. C. Guo, and Z. F. Han, Sci. Rep. 7, 39733 (2017).

    Article  ADS  Google Scholar 

  39. A. Maitra, Quantum Inf. Process. 16, 305 (2017), arXiv: 1704.01323.

    Article  ADS  Google Scholar 

  40. P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Sci. Bull. 63, 1345 (2018).

    Article  Google Scholar 

  41. Z. Gao, T. Li, and Z. Li, EPL 125, 40004 (2019).

    Article  ADS  Google Scholar 

  42. Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Sci. China-Phys. Mech. Astron. 63, 230362 (2020), arXiv: 1805.07228.

    Article  ADS  Google Scholar 

  43. Z. K. Zou, L. Zhou, W. Zhong, and Y. B. Sheng, EPL 131, 40005 (2020).

    Article  ADS  Google Scholar 

  44. L. Liu, J. L. Niu, C. R. Fan, X. T. Feng, and C. Wang, Quantum Inf. Process. 19, 404 (2020).

    Article  ADS  Google Scholar 

  45. X. D. Wu, L. Zhou, W. Zhong, and Y. B. Sheng, Quantum Inf. Process. 19, 354 (2020).

    Article  ADS  Google Scholar 

  46. P. H. Niu, J. W. Wu, L. G. Yin, and G. L. Long, Quantum Inf. Process. 19, 356 (2020), arXiv: 2006.07184.

    Article  ADS  Google Scholar 

  47. F. Gao, F. Z. Guo, Q. Y. Wen, and F. C. Zhu, Phys. Rev. Lett. 101, 208901 (2008).

    Article  ADS  Google Scholar 

  48. F. Gao, S. Qin, Q. Wen, and F. Zhu, Quantum Inform. Comput. 7, 329 (2007).

    Article  Google Scholar 

  49. S. J. Qin, F. Gao, Q. Y. Wen, and F. C. Zhu, Phys. Lett. A 357, 101 (2006).

    Article  ADS  Google Scholar 

  50. F. Gao, Q. Y. Wen, and F. C. Zhu, Phys. Lett. A 360, 748 (2007), arXiv: quant-ph/0606034.

    Article  ADS  Google Scholar 

  51. F. Gao, S. J. Qin, Q. Y. Wen, and F. C. Zhu, Opt. Commun. 283, 192 (2010).

    Article  ADS  Google Scholar 

  52. Y. G. Yang, M. Naseri, and Q. Y. Wen, Opt. Commun. 282, 4167 (2009).

    Article  ADS  Google Scholar 

  53. Y. G. Yang, H. P. Chai, Y. W. Teng, and Q. Y. Wen, Int. J. Theor. Phys. 50, 395 (2011).

    Article  Google Scholar 

  54. Y. G. Yang, J. Xia, X. Jia, and H. Zhang, Quantum Inf. Process. 12, 877 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  55. S. J. Qin, F. Gao, Q. Y. Wen, and F. C. Zhu, Phys. Rev. A 76, 062324 (2007), arXiv: 0801.2418.

    Article  ADS  Google Scholar 

  56. G. B. Xu, and D. H. Jiang, Quantum Inf. Process. 20, 128 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 62071015), the Beijing Municipal Science & Technology Commission (Grant No. Z191100007119004), and the Guangxi Key Laboratory of Cryptography and Information Security (Grant No. GCIS201810).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Wang, YC., Yang, YL. et al. Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. China Phys. Mech. Astron. 64, 260321 (2021). https://doi.org/10.1007/s11433-021-1692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1692-5

Navigation