Skip to main content
Log in

Si-based InGaAs photodetectors on heterogeneous integrated substrate

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, InGaAs p-i-n photodetectors (PDs) on an InP/SiO2/Si (InPOI) substrate fabricated by ion-slicing technology are demonstrated and compared with the identical device on a commercial InP substrate. The quality of epitaxial layers on the InPOI substrate is similar to that on the InP substrate. The photo responsivities of both devices measured at 1.55 µm are comparable, which are about 0.808–0.828 A W−1. Although the dark current of PD on the InPOI substrate is twice as high as that of PD on the InP substrate at 300 K, the peak detectivities of both PDs are comparable. In general, the overall performance of the InPOI-based PD is comparable to the InP-based PD, demonstrating that the ion-slicing technology is a promising route to enable the high-quality Si-based InP platform for the full photonic integration on a Si substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. A. Binetti, X. J. M. Leijtens, T. de Vries, Y. S. Oei, L. Di Cioccio, J. M. Fedeli, C. Lagahe, J. Van Campenhout, D. Van Thourhout, P. J. van Veldhoven, R. Nötzel, and M. K. Smit, IEEE Photon. J. 2, 299 (2010).

    Article  ADS  Google Scholar 

  2. Y. Cheng, Y. Ikku, M. Takenaka, and S. Takagi, IEEE Photon. Technol. Lett. 27, 1569 (2015).

    Article  ADS  Google Scholar 

  3. D. A. B. Miller, Appl. Opt. 49, F59 (2010).

    Article  Google Scholar 

  4. D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, IEEE J. Sel. Top. Quantum Electron. 20, 189 (2014).

    Article  ADS  Google Scholar 

  5. R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, IEEE Nanotechnol. Mag. 13, 17 (2019).

    Article  Google Scholar 

  6. D. Liang, and J. E. Bowers, Electron. Lett. 45, 578 (2009).

    Article  ADS  Google Scholar 

  7. M. Smit, K. Williams, and J. v. d. Tol, in 1.3 Integration of Photonics and Electronics: IEEE International Conference on Solid-State Circuits (ISSCC), San Francisco, USA, 2019, pp. 29–34.

  8. K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, and M. K. Smit, Photon. Res. 3, B60 (2015).

    Article  Google Scholar 

  9. K. Sun, D. Jung, C. Shang, A. Liu, J. Morgan, J. Zang, Q. Li, J. Klamkin, J. E. Bowers, and A. Beling, Opt. Express 26, 13605 (2018).

    Article  ADS  Google Scholar 

  10. T. E. Crumbaker, H. Y. Lee, M. J. Hafich, and G. Y. Robinson, Appl. Phys. Lett. 54, 140 (1989).

    Article  ADS  Google Scholar 

  11. B. Shi, Q. Li, and K. M. Lau, J. Cryst. Growth 464, 28 (2017).

    Article  ADS  Google Scholar 

  12. S. Yang, H. Lv, L. Ai, F. Tian, S. Yan, and Y. Zhang, Coatings 9, 823 (2019).

    Article  Google Scholar 

  13. Y. Gu, W. Huang, N. Yang, Y. Ma, Y. Shi, Q. Gong, J. Zhang, H. Huang, G. He, Y. Zhang, X. Shao, X. Li, and H. Gong, Mater. Res. Express 6, 075908 (2019).

    Article  ADS  Google Scholar 

  14. S. M. Lee, Y. J. Cho, J. B. Park, K. W. Shin, E. Hwang, S. Lee, M. J. Lee, S. H. Cho, D. Su Shin, J. Park, and E. Yoon, J. Cryst. Growth 416, 113 (2015).

    Article  ADS  Google Scholar 

  15. H. Kataria, C. Junesand, Z. Wang, W. Metaferia, Y. T. Sun, S. Lourdudoss, G. Patriarche, A. Bazin, F. Raineri, P. Mages, N. Julian, and J. E. Bowers, Semicond. Sci. Technol. 28, 094008 (2013).

    Article  ADS  Google Scholar 

  16. O. Moutanabbir, and U. Gösele, Annu. Rev. Mater. Res. 40, 469 (2010).

    Article  ADS  Google Scholar 

  17. J. Lin, T. You, M. Wang, K. Huang, S. Zhang, Q. Jia, M. Zhou, W. Yu, S. Zhou, X. Wang, and X. Ou, Nanotechnology 29, 504002 (2018).

    Article  ADS  Google Scholar 

  18. J. Lin, T. You, T. Jin, H. Liang, W. Wan, H. Huang, M. Zhou, F. Mu, Y. Yan, K. Huang, X. Zhao, J. Zhang, S. Wang, P. Gao, and X. Ou, APL Mater. 8, 051110 (2020).

    Article  ADS  Google Scholar 

  19. O. Moutanabbir, S. Christiansen, S. Senz, R. Scholz, M. Petzold, and U. Gösele, ECS Trans. 16, 251 (2008).

    Article  Google Scholar 

  20. J. H. Jang, G. Cueva, D. C. Dumka, W. E. Hoke, P. J. Lemonias, and I. Adesida, IEEE Photon. Technol. Lett. 13, 151 (2001).

    Article  ADS  Google Scholar 

  21. Y. Hu, D. Liang, K. Mukherjee, Y. Li, C. Zhang, G. Kurczveil, X. Huang, and R. G. Beausoleil, Light Sci. Appl. 8, 93 (2019).

    Article  ADS  Google Scholar 

  22. P. L. Gourley, and T. J. Drummond, Appl. Phys. Lett. 50, 1225 (1987).

    Article  ADS  Google Scholar 

  23. Y. S. Wang, S. J. Chang, Y. Z. Chiou, and W. Lin, J. Electrochem. Soc. 155, J307 (2008).

    Article  Google Scholar 

  24. K. Swaminathan, L. M. Yang, T. J. Grassman, G. Tabares, A. Guzman, A. Hierro, M. J. Mills, and S. A. Ringel, Opt. Express 19, 7280 (2011).

    Article  ADS  Google Scholar 

  25. J. Yang, M. Shi, X. Shao, T. Li, X. Li, N. Tang, H. Gong, R. Liu, H. Tang, and Z. J. Qiu, Infrared Phys. Tech. 71, 272 (2015).

    Article  Google Scholar 

  26. C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Y. Li, Infrared Phys. Tech. 53, 173 (2010).

    Article  ADS  Google Scholar 

  27. G. Cao, T. Li, H. Tang, X. Shao, X. Li, and H. Gong, in 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronics Materials and Devices for Sensing and Imaging, Harbin, China, 26–29 April 2014, edited by Y. Jiang, J. Yu, and B. Kippelen, p. 928406.

  28. Y. Ma, Y. Zhang, Y. Gu, X. Chen, S. Xi, B. Du, and H. Li, Opt. Express 23, 19278 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajie Lin or Xin Ou.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFE0131300), the National Natural Science Foundation of China (Grant Nos. U1732268, 61874128, 11622545, 61851406, 11705262, 61875220, and 61804157), the Frontier Science Key Program of Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC032, and ZDBS-LY-JSC009), the Chinese-Austrian Cooperative Research and Development Project (Grant No. GJHZ201950), the Shanghai Science and Technology Innovation Action Plan Program (Grant No. 17511106202), the Program of Shanghai Academic Research Leader (Grant No. 19XD1404600), the Shanghai Youth Top Talent Program, Shanghai Sailing Program (Grant Nos. 19YF1456200, and 19YF1456400), the K. C. Wong Education Foundation (Grant No. GJTD-2019-11), and the NCBiR within the Polish-China (Grant No. WPC/130/NIR-Si/2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, C., Lin, J., Chen, X. et al. Si-based InGaAs photodetectors on heterogeneous integrated substrate. Sci. China Phys. Mech. Astron. 64, 267311 (2021). https://doi.org/10.1007/s11433-020-1673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1673-1

PACS number(s)

Navigation