Skip to main content
Log in

A review of recent advances in machining techniques of complex surfaces

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Complex surfaces are widely used in aerospace, energy, and national defense industries. As one of the major means of manufacturing such as complex surfaces, the multi-axis numerical control (NC) machining technique makes much contribution. When the size of complex surfaces is large or the machining space is narrow, the multi-axis NC machining may not be a good choice because of its high cost and low dexterity. Robotic machining is a beneficial supplement to the NC machining. Since it has the advantages of large operating space, good dexterity, and easy to realize parallel machining, it is a promising technique to enhance the capability of traditional NC machining. However, whether it is the multi-axis NC machining or the robotic machining, owing to the complex geometric properties and strict machining requirements, high-efficiency and high-accuracy machining of complex surfaces has always been a great challenge and remains a cutting-edge problem in the current manufacturing field. In this paper, by surveying the machining of complex parts and large complex surfaces, the theory and technology of high-efficiency and high-accuracy machining of complex surfaces are reviewed thoroughly. Then, a series of typical applications are introduced to show the state-of-the-art on the machining of complex surfaces, especially the recently developed industrial software and equipment. Finally, the summary and prospect of the machining of complex surfaces are addressed. To the best of our knowledge, this may be the first attempt to systematically review the machining of complex surfaces by the multi-axis NC and robotic machining techniques, in order to promote the further research in related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stampfer B, González G, Gerstenmeyer M, et al. The present state of surface conditioning in cutting and grinding. J Manuf Mater Process, 2021, 5: 92

    Google Scholar 

  2. DIH4CPS-Digital Innovation Hub for Cyber-Physical Systems. http://dih4cps.eu/, 2020-05-09

  3. Munoa J, Beudaert X, Dombovari Z, et al. Chatter suppression techniques in metal cutting. CIRP Ann, 2016, 65: 785–808

    Article  Google Scholar 

  4. Altintas Y, Stepan G, Budak E, et al. Chatter stability of machining operations. J Manuf Sci Eng, 2020, 142: 110801

    Article  Google Scholar 

  5. Zhu L, Liu C. Recent progress of chatter prediction, detection and suppression in milling. Mech Syst Signal Processing, 2020, 143: 106840

    Article  Google Scholar 

  6. Wu G, Li G, Pan W, et al. A state-of-art review on chatter and geometric errors in thin-wall machining processes. J Manuf Processes, 2021, 68: 454–480

    Article  Google Scholar 

  7. Bao Y, Wang B, He Z, et al. Recent progress in flexible supporting technology for aerospace thin-walled parts: A review. Chin J Aeronautics, 2022, 35: 10–26

    Article  Google Scholar 

  8. Ulutan D, Ozel T. Machining induced surface integrity in titanium and nickel alloys: A review. Int J Machine Tools Manufacture, 2011, 51: 250–280

    Article  Google Scholar 

  9. Sarıkaya M, Gupta M K, Tomaz I, et al. A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP J Manuf Sci Tech, 2021, 35: 624–658

    Article  Google Scholar 

  10. Nie G, Yang Z, Zhang D, et al. Dynamics of chip formation during the cutting process using imaging techniques: A review. Int J Mech Sys Dyn, 2022, 2: 27–49

    Article  Google Scholar 

  11. Lehmann C, Pellicciari M, Drust M, et al. Machining with industrial robots: The COMET project approach. In: Proceedings of International Workshop on Robotics in Smart Manufacturing. Porto, Portugal: Springer Berlin Heidelberg, 2013. 27–36

    Google Scholar 

  12. Schreck G, Surdilovic D, Krueger J. HEPHESTOS: Hard material small-batch industrial machining robot. In: Proceedings of VDE International Symposium on Robotics. Munich, Germany, 2014. 239–244

  13. D’Urso M, Schmid P, Steinecker A. An all-in-one robotic platform for hybrid manufacturing of large volume parts. In: Proceedings of IFIP WG 5.5 International Precision Assembly Seminar. Chamonix, 2019. 3–14

  14. Pandremenos J, Doukas C, Stavropoulos P, et al. Machining with robots: A critical review. In: Proceedings of 7th International Conference Digital Enterprise Technology. Athens, Greece, France, 2011. 1–9

  15. Chen Y, Dong F. Robot machining: Recent development and future research issues. Int J Adv Manuf Technol, 2013, 66: 1489–1497

    Article  Google Scholar 

  16. Ji W, Wang L. Industrial robotic machining: A review. Int J Adv Manuf Technol, 2019, 103: 1239–1255

    Article  Google Scholar 

  17. Kim S H, Nam E, Ha T I, et al. Robotic machining: A review of recent progress. Int J Precis Eng Manuf, 2019, 20: 1629–1642

    Article  Google Scholar 

  18. Tao B, Zhao X W, Ding H. Mobile-robotic machining for large complex components: A review study. Sci China Tech Sci, 2019, 62: 1388–1400

    Article  Google Scholar 

  19. Verl A, Valente A, Melkote S, et al. Robots in machining. CIRP Ann, 2019, 68: 799–822

    Article  Google Scholar 

  20. Zhu D, Feng X, Xu X, et al. Robotic grinding of complex components: A step towards efficient and intelligent machining—Challenges, solutions, and applications. Robot Comput-Integrated Manuf, 2020, 65: 101908

    Article  Google Scholar 

  21. Zhu Z, Tang X, Chen C, et al. High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends. Chin J Aeronautics, 2022, 35: 22–46

    Article  Google Scholar 

  22. Arrazola J, Özel T, Umbrello D, et al. Recent advances in modelling of metal machining processes. CIRP Ann, 2013, 62: 695–718

    Article  Google Scholar 

  23. Yan B, Hao Y, Zhu L, et al. Towards high milling accuracy of turbine blades: A review. Mech Syst Signal Processing, 2022, 170: 108727

    Article  Google Scholar 

  24. Kim G M, Cho P J, Chu C N. Cutting force prediction of sculptured surface ball-end milling using Z-map. Int J Machine Tools Manufacture, 2000, 40: 277–291

    Article  Google Scholar 

  25. Arrazola P J, Özel T. Investigations on the effects of friction modeling in finite element simulation of machining. Int J Mech Sci, 2010, 52: 31–42

    Article  Google Scholar 

  26. Jin X, Altintas Y. Slip-line field model of micro-cutting process with round tool edge effect. J Mater Processing Tech, 2011, 211: 339–355

    Article  Google Scholar 

  27. Zhu K, Zhang Y. Modeling of the instantaneous milling force per tooth with tool run-out effect in high speed ball-end milling. Int J Machine Tools Manufacture, 2017, 118–119: 37–48

    Article  Google Scholar 

  28. Li H Z, Liu K, Li X P. A new method for determining the undeformed chip thickness in milling. J Mater Processing Tech, 2001, 113: 378–384

    Article  Google Scholar 

  29. Yang Y, Zhang W H, Wan M. Effect of cutter runout on process geometry and forces in peripheral milling of curved surfaces with variable curvature. Int J Machine Tools Manufacture, 2011, 51: 420–427

    Article  Google Scholar 

  30. Chen Y, Lu J, Deng Q, et al. Modeling study of milling force considering tool runout at different types of radial cutting depth. J Manuf Processes, 2022, 76: 486–503

    Article  Google Scholar 

  31. Zhuang K, Zhang X, Zhang D, et al. On cutting parameters selection for plunge milling of heat-resistant-super-alloys based on precise cutting geometry. J Mater Processing Tech, 2013, 213: 1378–1386

    Article  Google Scholar 

  32. Zhu Z, Yan R, Peng F, et al. Parametric chip thickness model based cutting forces estimation considering cutter runout of five-axis general end milling. Int J Machine Tools Manufacture, 2016, 101: 35–51

    Article  Google Scholar 

  33. Li Z L, Zhu L M. An accurate method for determining cutterworkpiece engagements in five-axis milling with a general tool considering cutter runout. J Manuf Sci Eng, 2018, 140: 021001

    Article  Google Scholar 

  34. Roth D, Gray P, Ismail F, et al. Mechanistic modelling of 5-axis milling using an adaptive and local depth buffer. Comput-Aided Des, 2007, 39: 302–312

    Article  Google Scholar 

  35. Ozturk B, Lazoglu I. Machining of free-form surfaces. Part I: Analytical chip load. Int J Machine Tools Manufacture, 2006, 46: 728–735

    Article  Google Scholar 

  36. Huang T, Zhang X, Ding H. Decoupled chip thickness calculation model for cutting force prediction in five-axis ball-end milling. Int J Adv Manuf Technol, 2013, 69: 1203–1217

    Article  Google Scholar 

  37. Li Z L, Niu J B, Wang X Z, et al. Mechanistic modeling of five-axis machining with a general end mill considering cutter runout. Int J Machine Tools Manufacture, 2015, 96: 67–79

    Article  Google Scholar 

  38. Kilic Z M. Generalized modelling of flexible machining system with arbitrary tool geometry. Dissertation for the Doctoral Degree. Vancouver: The University of British Columbia, 2015. 4–17

    Google Scholar 

  39. Niu J, Ding Y, Zhu L M, et al. Mechanics and multi-regenerative stability of variable pitch and variable helix milling tools considering runout. Int J Machine Tools Manufacture, 2017, 123: 129–145

    Article  Google Scholar 

  40. Zhan D, Jiang S, Niu J, et al. Dynamics modeling and stability analysis of five-axis ball-end milling system with variable pitch tools. Int J Mech Sci, 2020, 182: 105774

    Article  Google Scholar 

  41. Faassen R P H, van de Wouw N, Nijmeijer H, et al. An improved tool path model including periodic delay for chatter prediction in milling. J Comput Nonlinear Dyn, 2007, 2: 167–179

    Article  Google Scholar 

  42. Bachrathy D, Stépán G, Turi J. State dependent regenerative effect in milling processes. J Comput Nonlinear Dyn, 2011, 6: 41002

    Article  Google Scholar 

  43. Comak A, Altintas Y. Dynamics and stability of turn-milling operations with varying time delay in discrete time domain. J Manuf Sci Eng, 2018, 140: 101013

    Article  Google Scholar 

  44. Campa F J, Lopez de Lacalle L N, Celaya A. Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams. Int J Machine Tools Manufacture, 2011, 51: 43–53

    Article  Google Scholar 

  45. Budak E, Tunç L T, Alan S, et al. Prediction of workpiece dynamics and its effects on chatter stability in milling. CIRP Ann, 2012, 61: 339–342

    Article  Google Scholar 

  46. Yang Y, Zhang W H, Ma Y C, et al. Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces. Int J Machine Tools Manufacture, 2016, 109: 36–48

    Article  Google Scholar 

  47. Zhang X, Zhu L, Zhang D, et al. Numerical robust optimization of spindle speed for milling process with uncertainties. Int J Machine Tools Manufacture, 2012, 61: 9–19

    Article  Google Scholar 

  48. Yu Y Y, Zhang D, Zhang X M, et al. Online stability boundary drifting prediction in milling process: An incremental learning approach. Mech Syst Signal Processing, 2022, 173: 109062

    Article  Google Scholar 

  49. Huang T, Chen Z, Zhang H T, et al. Active control of an active magnetic bearings supported spindle for chatter suppression in milling process. J Dynamic Syst Measurement Control, 2015, 137: 111003

    Article  Google Scholar 

  50. Huang T, Zhu L, Du S, et al. Robust active chatter control in milling processes with variable pitch cutters. J Manuf Sci Eng, 2018, 140: 101005

    Article  Google Scholar 

  51. Wan S, Li X, Su W, et al. Active chatter suppression for milling process with sliding mode control and electromagnetic actuator. Mech Syst Signal Processing, 2020, 136: 106528

    Article  Google Scholar 

  52. Cao L, Huang T, Shi D M, et al. Active chatter suppression in low immersion intermittent milling process. J Manuf Sci Eng, 2020, 142: 101005

    Article  Google Scholar 

  53. Altintaş Y, Budak E. Analytical prediction of stability lobes in milling. CIRP Ann, 1995, 44: 357–362

    Article  Google Scholar 

  54. Merdol S D, Altintas Y. Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng, 2004, 126: 459–466

    Article  Google Scholar 

  55. Insperger T, Stépán G. Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Meth Engng, 2004, 61: 117–141

    Article  MathSciNet  MATH  Google Scholar 

  56. Ding Y, Zhu L M, Zhang X J, et al. A full-discretization method for prediction of milling stability. Int J Machine Tools Manufacture, 2010, 50: 502–509

    Article  Google Scholar 

  57. Huang T, Zhang X, Zhang X, et al. An efficient linear approximation of acceleration method for milling stability prediction. Int J Machine Tools Manufacture, 2013, 74: 56–64

    Article  Google Scholar 

  58. Niu J B, Ding Y, Zhu L M, et al. Runge-Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn, 2014, 76: 289–304

    Article  MathSciNet  MATH  Google Scholar 

  59. Cao L, Zhang X M, Huang T, et al. Derived nodes approach for improving accuracy of machining stability prediction. J Vib Acoustics, 2018, 140: 31017

    Article  Google Scholar 

  60. Huang T, Zhang X, Ding H. A novel approach with smallest transition matrix for milling stability prediction. Nonlinear Dyn, 2017, 90: 95–104

    Article  MathSciNet  Google Scholar 

  61. Huang T, Cao L, Zhang X M, et al. Necessary discrete condition for error control of time-domain methods in milling stability prediction. Nonlinear Dyn, 2021, 104: 3771–3780

    Article  Google Scholar 

  62. Honeycutt A, Schmitz T L. A new metric for automated stability identification in time domain milling simulation. J Manuf Sci Eng, 2016, 138: 74501

    Article  Google Scholar 

  63. Huang T, Zhang X M, Ding H. Tool orientation optimization for reduction of vibration and deformation in ball-end milling of thin-walled impeller blades. Procedia CIRP, 2017, 58: 210–215

    Article  Google Scholar 

  64. Kim G M, Kim B H, Chu C N. Estimation of cutter deflection and form error in ball-end milling processes. Int J Machine Tools Manufacture, 2003, 43: 917–924

    Article  Google Scholar 

  65. Ratchev S, Liu S, Huang W, et al. A flexible force model for end milling of low-rigidity parts. J Mater Processing Tech, 2004, 153–154: 134–138

    Article  Google Scholar 

  66. Wan M, Zhang W, Qiu K, et al. Numerical prediction of static form errors in peripheral milling of thin-walled workpieces with irregular meshes. J Manuf Sci Eng, 2005, 127: 13–22

    Article  Google Scholar 

  67. Li Z L, Tuysuz O, Zhu L M, et al. Surface form error prediction in five-axis flank milling of thin-walled parts. Int J Machine Tools Manufacture, 2018, 128: 21–32

    Article  Google Scholar 

  68. Shi D M, Huang T, Zhang X M, et al. An explicit coupling model for accurate prediction of force-induced deflection in thin-walled workpiece milling. J Manuf Sci Eng, 2022, 144: 081005

    Article  Google Scholar 

  69. Cao L, Zhang X M, Huang T, et al. Online monitoring machining errors of thin-walled workpiece: A knowledge embedded sparse Bayesian regression approach. IEEE ASME Trans Mechatron, 2019, 24: 1259–1270

    Article  Google Scholar 

  70. Cao L, Huang T, Zhang X M, et al. Generative adversarial network for prediction of workpiece surface topography in machining stage. IEEE ASME Trans Mechatron, 2021, 26: 480–490

    Article  Google Scholar 

  71. Wei Y, Wang X W. Computer simulation and experimental study of machining deflection due to original residual stress of aerospace thin-walled parts. Int J Adv Manuf Technol, 2007, 33: 260–265

    Article  Google Scholar 

  72. Gao H, Zhang Y, Wu Q, et al. Investigation on influences of initial residual stress on thin-walled part machining deformation based on a semi-analytical model. J Mater Processing Tech, 2018, 262: 437–448

    Article  Google Scholar 

  73. Masoudi S, Amini S, Saeidi E, et al. Effect of machining-induced residual stress on the distortion of thin-walled parts. Int J Adv Manuf Technol, 2015, 76: 597–608

    Article  Google Scholar 

  74. Zhang Z, Zhang Z, Zhang D, et al. Milling distortion prediction for thin-walled component based on the average MIRS in specimen machining. Int J Adv Manuf Technol, 2020, 111: 3379–3392

    Article  Google Scholar 

  75. Lazoglu I, Mamedov A. Deformation of thin parts in micromilling. CIRP Ann, 2016, 65: 117–120

    Article  Google Scholar 

  76. Hussain A, Lazoglu I. Distortion in milling of structural parts. CIRP Ann, 2019, 68: 105–108

    Article  Google Scholar 

  77. Wang B, Liu Z, Cai Y, et al. Advancements in material removal mechanism and surface integrity of high speed metal cutting: A review. Int J Machine Tools Manufacture, 2021, 166: 103744

    Article  Google Scholar 

  78. Brinksmeier E, Cammett J T, König W, et al. Residual stresses—Measurement and causes in machining processes. CIRP Ann, 1982, 31: 491–510

    Article  Google Scholar 

  79. Klocke F, Mader S. Fundamentals of the deep rolling of compressor blades for turbo aircraft engines. Steel Res Int, 2005, 76: 229–235

    Article  Google Scholar 

  80. Jawahir I S, Brinksmeier E, M’Saoubi R, et al. Surface integrity in material removal processes: Recent advances. CIRP Ann, 2011, 60: 603–626

    Article  Google Scholar 

  81. Axinte D A, Dewes R C. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J Mater Processing Tech, 2002, 127: 325–335

    Article  Google Scholar 

  82. Capello E. Residual stresses in turning. J Mater Processing Tech, 2005, 160: 221–228

    Article  Google Scholar 

  83. Outeiro J C, Pina J C, M’Saoubi R, et al. Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Ann, 2008, 57: 77–80

    Article  Google Scholar 

  84. Özel T, Ulutan D. Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann, 2012, 61: 547–550

    Article  Google Scholar 

  85. Liang S Y, Su J C. Residual stress modeling in orthogonal machining. CIRP Ann, 2007, 56: 65–68

    Article  Google Scholar 

  86. Ulutan D, Erdem Alaca B, Lazoglu I. Analytical modelling of residual stresses in machining. J Mater Processing Tech, 2007, 183: 77–87

    Article  Google Scholar 

  87. Hua Y, Liu Z, Wang B, et al. Residual stress regenerated on low plasticity burnished Inconel 718 surface after initial turning process. J Manuf Sci Eng, 2019, 141: 121004

    Article  Google Scholar 

  88. Huang X D, Zhang X M, Leopold J, et al. Analytical model for prediction of residual stress in dynamic orthogonal cutting process. J Manuf Sci Eng, 2018, 140: 011002

    Article  Google Scholar 

  89. Guo Y, Schwach D. An experimental investigation of white layer on rolling contact fatigue using acoustic emission technique. Int J Fatigue, 2005, 27: 1051–1061

    Article  Google Scholar 

  90. Chou Y K, Evans C J. White layers and thermal modeling of hard turned surfaces. Int J Machine Tools Manufacture, 1999, 39: 1863–1881

    Article  Google Scholar 

  91. Umbrello D, Micari F, Jawahir I S. The effects of cryogenic cooling on surface integrity in hard machining: A comparison with dry machining. CIRP Ann, 2012, 61: 103–106

    Article  Google Scholar 

  92. Zhang X M, Huang X D, Chen L, et al. Effects of sequential cuts on white layer formation and retained austenite content in hard turning of AISI52100 steel. J Manuf Sci Eng, 2017, 139: 064502

    Article  Google Scholar 

  93. Ramesh A, Melkote S N, Allard L F, et al. Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng-A, 2005, 390: 88–97

    Article  Google Scholar 

  94. Zeng H, Yan R, Hu T, et al. Analytical modeling of white layer formation in orthogonal cutting of AerMet100 steel based on phase transformation mechanism. J Manuf Sci Eng, 2019, 141: 064502

    Article  Google Scholar 

  95. Zhang F, Duan C, Sun W, et al. Effects of cutting conditions on the microstructure and residual stress of white and dark layers in cutting hardened steel. J Mater Processing Tech, 2019, 266: 599–611

    Article  Google Scholar 

  96. Hosseini S B, Klement U, Yao Y, et al. Formation mechanisms of white layers induced by hard turning of AISI 52100 steel. Acta Mater, 2015, 89: 258–267

    Article  Google Scholar 

  97. Ranganath S, Guo C, Hegde P. A finite element modeling approach to predicting white layer formation in nickel superalloys. CIRP Ann, 2009, 58: 77–80

    Article  Google Scholar 

  98. Liao Z, Polyakov M, Diaz O G, et al. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation-mechanical machining case. Acta Mater, 2019, 180: 2–14

    Article  Google Scholar 

  99. Nie G C, Zhang K, Outeiro J, et al. Plastic strain threshold determination for white layer formation in hard turning of AISI 52100 steel using micro-grid technique and finite element simulations. J Manuf Sci Eng, 2019, 142: 034501

    Article  Google Scholar 

  100. Brown M, M’Saoubi R, Crawforth P, et al. On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. J Mater Processing Tech, 2022, 299: 117378

    Article  Google Scholar 

  101. Park Y W, Cohen P H, Ruud C O. The development of a mathematical model for predicting the depth of plastic deformation in a machined surface. Mater Manuf Processes, 1993, 8: 703–715

    Article  Google Scholar 

  102. Yang D, Liu Z. Surface plastic deformation and surface topography prediction in peripheral milling with variable pitch end mill. Int J Machine Tools Manufacture, 2015, 91: 43–53

    Article  Google Scholar 

  103. Sharman A R C, Hughes J I, Ridgway K. An analysis of the residual stresses generated in Inconel 718™ when turning. J Mater Processing Tech, 2006, 173: 359–367

    Article  Google Scholar 

  104. Sadat A B, Reddy M Y. Surface integrity of inconel-718 nickel-base superalloy using controlled and natural contact length tools. Part I: Lubricated. Exp Mech, 1992, 32: 282–288

    Article  Google Scholar 

  105. Ghadbeigi H, Bradbury S R, Pinna C, et al. Determination of micro-scale plastic strain caused by orthogonal cutting. Int J Machine Tools Manufacture, 2008, 48: 228–235

    Article  Google Scholar 

  106. Guo Y, M’Saoubi R, Chandrasekar S. Control of deformation levels on machined surfaces. CIRP Ann, 2011, 60: 137–140

    Article  Google Scholar 

  107. Outeiro J C, Campocasso S, Denguir L A, et al. Experimental and numerical assessment of subsurface plastic deformation induced by OFHC copper machining. CIRP Ann, 2015, 64: 53–56

    Article  Google Scholar 

  108. Zhang D, Zhang X M, Leopold J, et al. Subsurface deformation generated by orthogonal cutting: Analytical modeling and experimental verification. J Manuf Sci Eng, 2017, 139: 094502

    Article  Google Scholar 

  109. Zhang D, Zhang X M, Nie G C, et al. Characterization of material strain and thermal softening effects in the cutting process. Int J Machine Tools Manufacture, 2021, 160: 103672

    Article  Google Scholar 

  110. Yang Z Y, Zhang X M, Nie G C, et al. A comprehensive experiment-based approach to generate stress field and slip lines in cutting process. J Manuf Sci Eng, 2021, 143: 071014

    Article  Google Scholar 

  111. Pan Z, Zhang H, Zhu Z, et al. Chatter analysis of robotic machining process. J Mater Processing Tech, 2006, 173: 301–309

    Article  Google Scholar 

  112. Rezaei A, Akbarzadeh A, Akbarzadeh T M R. An investigation on stiffness of a 3-PSP spatial parallel mechanism with flexible moving platform using invariant form. Mechanism Machine Theor, 2012, 51: 195–216

    Article  Google Scholar 

  113. Klimchik A, Pashkevich A, Chablat D. Fundamentals of manipulator stiffness modeling using matrix structural analysis. Mechanism Machine Theor, 2019, 133: 365–394

    Article  Google Scholar 

  114. Zhao C, Guo H, Zhang D, et al. Stiffness modeling of n(3RRlS) reconfigurable series-parallel manipulators by combining virtual joint method and matrix structural analysis. Mechanism Machine Theor, 2020, 152: 103960

    Article  Google Scholar 

  115. Alici G, Shirinzadeh B. Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Trans Robot, 2005, 21: 554–564

    Article  MATH  Google Scholar 

  116. Dumas C, Caro S, Garnier S, et al. Joint stiffness identification of six-revolute industrial serial robots. Robotics Comput-Integrated Manuf, 2011, 27: 881–888

    Article  Google Scholar 

  117. Guo Y, Dong H, Ke Y. Stiffness-oriented posture optimization in robotic machining applications. Robotics Comput-Integrated Manuf, 2015, 35: 69–76

    Article  Google Scholar 

  118. Lin Y, Zhao H, Ding H. Posture optimization methodology of 6R industrial robots for machining using performance evaluation indexes. Robotics Comput-Integrated Manuf, 2017, 48: 59–72

    Article  Google Scholar 

  119. Chen C, Peng F, Yan R, et al. Stiffness performance index based posture and feed orientation optimization in robotic milling process. Robotics Comput-Integrated Manuf, 2019, 55: 29–40

    Article  Google Scholar 

  120. Xie H, Li W, Zhu D H, et al. A systematic model of machining error reduction in robotic grinding. IEEE ASME Trans Mechatron, 2020, 25: 2961–2972

    Article  Google Scholar 

  121. Liao Z Y, Wang Q H, Xie H L, et al. Optimization of robot posture and workpiece setup in robotic milling with stiffness threshold. IEEE ASME Trans Mechatron, 2022, 27: 582–593

    Article  Google Scholar 

  122. Ye C, Yang J, Zhao H, et al. Task-dependent workpiece placement optimization for minimizing contour errors induced by the low posture-dependent stiffness of robotic milling. Int J Mech Sci, 2021, 205: 106601

    Article  Google Scholar 

  123. Wu J, Wang J, You Z. An overview of dynamic parameter identification of robots. Robotics Comput-Integrated Manuf, 2010, 26: 414–419

    Article  Google Scholar 

  124. Gautier M, Briot S. Dynamic parameter identification of a 6 DOF industrial robot using power model. In: Proceedings of IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013. 2914–2920

    Google Scholar 

  125. Guo K, Pan Y, Yu H. Composite learning robot control with friction compensation: A neural network-based approach. IEEE Trans Ind Electron, 2018, 66: 7841–7851

    Article  Google Scholar 

  126. Liu X, Zhao F, Ge S S, et al. End-effector force estimation for flexible-joint robots with global friction approximation using neural networks. IEEE Trans Ind Inf, 2018, 15: 1730–1741

    Article  Google Scholar 

  127. Gautier M. Numerical calculation of the base inertial parameters of robots. J Robotic Syst, 1991, 8: 485–506

    Article  MATH  Google Scholar 

  128. Gautier M, Khalil W. Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans Robot Automat, 1990, 6: 368–373

    Article  Google Scholar 

  129. Ros J, Plaza A, Iriarte X, et al. Inertia transfer concept based general method for the determination of the base inertial parameters. Multibody Syst Dyn, 2015, 34: 327–347

    Article  MathSciNet  MATH  Google Scholar 

  130. Atkeson C G, An C H, Hollerbach J M. Estimation of inertial parameters of manipulator loads and links. Int J Robotics Res, 1986, 5: 101–119

    Article  Google Scholar 

  131. Swevers J, Ganseman C, Tukel D B, et al. Optimal robot excitation and identification. IEEE Trans Robot Automat, 1997, 13: 730–740

    Article  Google Scholar 

  132. Katsumata T, Navarro B, Bonnet V, et al. Optimal exciting motion for fast robot identification. Application to contact painting tasks with estimated external forces. Robotics Autonomous Syst, 2019, 113: 149–159

    Article  Google Scholar 

  133. Gautier M, Poignet P. Extended Kalman filtering and weighted least squares dynamic identification of robot. Control Eng Pract, 2001, 9: 1361–1372

    Article  Google Scholar 

  134. Dolinsky K, Celikovsky S. Application of the method of maximum likelihood to identification of bipedal walking robots. IEEE Trans Contr Syst Technol, 2017, 26: 1500–1507

    Article  Google Scholar 

  135. Janot A, Vandanjon P O, Gautier M. A generic instrumental variable approach for industrial robot identification. IEEE Trans Contr Syst Technol, 2013, 22: 132–145

    Article  Google Scholar 

  136. Gong C, Yuan J, Ni J. Nongeometric error identification and compensation for robotic system by inverse calibration. Int J Machine Tools Manufacture, 2000, 40: 2119–2137

    Article  Google Scholar 

  137. Wu Y, Li C, Li J, et al. Comparative study of robot kinematic calibration algorithms using a unified geometric framework. In: Proceedings of IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 1393–1398

    Google Scholar 

  138. Yang X, Wu L, Li J, et al. A minimal kinematic model for serial robot calibration using POE formula. Robotics Comput-Integrated Manuf, 2014, 30: 326–334

    Article  Google Scholar 

  139. Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics Comput-Integrated Manuf, 2013, 29: 236–245

    Article  Google Scholar 

  140. Schneider U, Momeni-K M, Ansaloni M, et al. Stiffness modeling of industrial robots for deformation compensation in machining. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014. 4464–4469

    Google Scholar 

  141. Klimchik A, Pashkevich A. Robotic manipulators with double encoders: accuracy improvement based on advanced stiffness modeling and intelligent control. In: Proceedings of 16th IFAC Symposium on Information Control Problems in Manufacturing (INCOM). Bergamo, Italy, 2018. 51: 740–745

    Google Scholar 

  142. Moeller C, Schmidt H C, Koch P, et al. Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system. SAE Int J Aerosp, 2017, 10: 100–108

    Article  Google Scholar 

  143. Bilal D K, Unel M, Tunc L T, et al. Development of a vision based pose estimation system for robotic machining and improving its accuracy using LSTM neural networks and sparse regression. Robotics Comput-Integrated Manuf, 2022, 74: 102262

    Article  Google Scholar 

  144. Dong Y, Ren T, Hu K, et al. Contact force detection and control for robotic polishing based on joint torque sensors. Int J Adv Manuf Technol, 2020, 107: 2745–2756

    Article  Google Scholar 

  145. Chen F, Zhao H, Li D, et al. Robotic grinding of a blisk with two degrees of freedom contact force control. Int J Adv Manuf Technol, 2019, 101: 461–474

    Article  Google Scholar 

  146. Lin Y, Zhao H, Ding H. External force estimation for industrial robots with flexible joints. IEEE Robot Autom Lett, 2020, 5: 1311–1318

    Article  Google Scholar 

  147. Wang W, Yun C. A path planning method for robotic belt surface grinding. Chin J Aeronautics, 2011, 24: 520–526

    Article  Google Scholar 

  148. Ma K, Han L, Sun X, et al. A path planning method of robotic belt grinding for workpieces with complex surfaces. IEEE ASME Trans Mechatron, 2020, 25: 728–738

    Article  Google Scholar 

  149. Ng W X, Chan H K, Teo W K, et al. Programming a robot for conformance grinding of complex shapes by capturing the tacit knowledge of a skilled operator. IEEE Trans Automat Sci Eng, 2017, 14: 1020–1030

    Article  Google Scholar 

  150. Nemec B, Yasuda K, Ude A. A virtual mechanism approach for exploiting functional redundancy in finishing operations. IEEE Trans Automat Sci Eng, 2020, 18: 2048–2060

    Article  Google Scholar 

  151. Wang G, Li W, Jiang C, et al. Trajectory planning and optimization for robotic machining based on measured point cloud. IEEE Trans Robot, 2022, 38: 1621–1637

    Article  Google Scholar 

  152. Stilman M. Global manipulation planning in robot joint space with task constraints. IEEE Trans Robot, 2010, 26: 576–584

    Article  Google Scholar 

  153. Liu H, Lai X, Wu W. Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints. Robotics Comput-Integrated Manuf, 2013, 29: 309–317

    Article  Google Scholar 

  154. Deng H, Luo H, Wang R, et al. Grasping force planning and control for tendon-driven anthropomorphic prosthetic hands. J Bionic Eng, 2018, 15: 795–804

    Article  Google Scholar 

  155. Bruno S, Lorenzo S, Luigi V, et al. Robotics: Modelling, Planning and Control. Springer, London, 2010

    Google Scholar 

  156. Zhao H, Li X, Ge K, et al. A contour error definition, estimation approach and control structure for six-dimensional robotic machining tasks. Robotics Comput-Integrated Manuf, 2022, 73: 102235

    Article  Google Scholar 

  157. Xu Z, Li S, Zhou X, et al. Dynamic neural networks for motion-force control of redundant manipulators: An optimization perspective. IEEE Trans Ind Electron, 2020, 68: 1525–1536

    Article  Google Scholar 

  158. Zhang H, Li L, Zhao J, et al. Design and implementation of hybrid force/position control for robot automation grinding aviation blade based on fuzzy PID. Int J Adv Manuf Technol, 2020, 107: 1741–1754

    Article  Google Scholar 

  159. Gierlak P, Szuster M. Adaptive position/force control for robot manipulator in contact with a flexible environment. Robotics Autonomous Syst, 2017, 95: 80–101

    Article  Google Scholar 

  160. Zhu L M, Zhao H, Ding H. Real-time contouring error estimation for multi-axis motion systems using the second-order approximation. Int J Machine Tools Manufacture, 2013, 68: 75–80

    Article  Google Scholar 

  161. Li X, Zhao H, Zhao X, et al. Dual sliding mode contouring control with high accuracy contour error estimation for five-axis CNC machine tools. Int J Machine Tools Manufacture, 2016, 108: 74–82

    Article  Google Scholar 

  162. Li X F, Zhao H, Zhao X, et al. Interpolation-based contour error estimation and component-based contouring control for five-axis CNC machine tools. Sci China Tech Sci, 2018, 61: 1666–1678

    Article  Google Scholar 

  163. Uzunovic T, Baran E A, Golubovic E, et al. A novel hybrid contouring control method for 3-DOF robotic manipulators. Mechatronics, 2016, 40: 178–193

    Article  Google Scholar 

  164. Kornmaneesang W, Chen S. MPC-based robust contouring control for a robotic machining system. Asian J Control, 2021, 23: 1212–1224

    Article  Google Scholar 

  165. Wang C, Zhao Y, Chen Y, et al. Nonparametric statistical learning control of robot manipulators for trajectory or contour tracking. Robotics Comput-Integrated Manuf, 2015, 35: 96–103

    Article  Google Scholar 

  166. Liang X, Zhao H, Li X, et al. Force tracking impedance control with unknown environment via an iterative learning algorithm. Sci China Inform Sci, 2019, 62: 050215

    Article  Google Scholar 

  167. Ott C, Mukherjee R, Nakamura Y. Unified impedance and admittance control. In: Proceedings of IEEE International Conference on Robotics and Automation. Anchorage, AK: IEEE, 2010. 554–561

    Google Scholar 

  168. Seraji H, Colbaugh R. Force tracking in impedance control. Int J Robotics Res, 1997, 16: 97–117

    Article  Google Scholar 

  169. Diolaiti N, Melchiorri C, Stramigioli S. Contact impedance estimation for robotic systems. IEEE Trans Robot, 2005, 21: 925–935

    Article  Google Scholar 

  170. Roveda L, Vicentini F, Tosatti L M. Deformation-tracking impedance control in interaction with uncertain environments. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013. 1992–1997

    Google Scholar 

  171. Abu-Dakka F J, Saveriano M. Variable impedance control and learning—A review. Frontiers Robot AI, 2020, 7: 1–18

    Article  Google Scholar 

  172. Yang C, Zeng C, Fang C, et al. A dmps-based framework for robot learning and generalization of humanlike variable impedance skills. IEEE ASME Trans Mechatron, 2018, 23: 1193–1203

    Article  Google Scholar 

  173. Duan J, Gan Y, Chen M, et al. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robotics Autonomous Syst, 2018, 102: 54–65

    Article  Google Scholar 

  174. Burdet E, Osu R, Franklin D W, et al. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 2001, 414: 446–449

    Article  Google Scholar 

  175. Buchli J, Stulp F, Theodorou E, et al. Learning variable impedance control. Int J Robotics Res, 2011, 30: 820–833

    Article  Google Scholar 

  176. Kronander K, Billard A. Stability considerations for variable impedance control. IEEE Trans Robot, 2016, 32: 1298–1305

    Article  Google Scholar 

  177. Ferraguti F, Landi C T, Sabattini L, et al. A variable admittance control strategy for stable physical human-robot interaction. Int J Robotics Res, 2019, 38: 747–765

    Article  Google Scholar 

  178. Acero R, Brau A, Santolaria J, et al. Verification of an articulated arm coordinate measuring machine using a laser tracker as reference equipment and an indexed metrology platform. Measurement, 2015, 69: 52–63

    Article  Google Scholar 

  179. Schmitt R H, Peterek M, Morse E, et al. Advances in large-scale metrology-Review and future trends. CIRP Ann, 2016, 65: 643–665

    Article  Google Scholar 

  180. Li W L, Xie H, Zhang G, et al. Hand-eye calibration in visually-guided robot grinding. IEEE Trans Cybern, 2015, 46: 2634–2642

    Article  Google Scholar 

  181. Jiang J, Luo X, Luo Q, et al. An overview of hand-eye calibration. Int J Adv Manuf Technol, 2022, 119: 77–97

    Article  Google Scholar 

  182. Pedrosa E, Oliveira M, Lau N, et al. A general approach to hand-eye calibration through the optimization of atomic transformations. IEEE Trans Robot, 2021, 37: 1619–1633

    Article  Google Scholar 

  183. Nguyen H, Pham Q C. On the covariance of X in AX=XB. IEEE Trans Robot, 2018, 34: 1651–1658

    Article  Google Scholar 

  184. Qiao Y, Chen Y, Chen B, et al. A novel calibration method for multirobots system utilizing calibration model without nominal kinematic parameters. Precision Eng, 2017, 50: 211–221

    Article  Google Scholar 

  185. Wang J, Wang W, Wu C H, et al. A plane projection based method for base frame calibration of cooperative manipulators. IEEE Trans Ind Inf, 2018, 15: 1688–1697

    Article  Google Scholar 

  186. Wang G, Li W, Jiang C, et al. Simultaneous calibration of multicoordinates for a dual-robot system by solving the AXB=YCZ problem. IEEE Trans Robot, 2021, 37: 1172–1185

    Article  Google Scholar 

  187. Huang X, Mei G, Zhang J, et al. A comprehensive survey on point cloud registration. arXiv preprint, arXiv: 2103.02690, 2021

  188. Salti S, Tombari F, Di Stefano L. SHOT: Unique signatures of histograms for surface and texture description. Comput Vision Image Understanding, 2014, 125: 251–264

    Article  Google Scholar 

  189. Zhao H, Tang M, Ding H. HoPPF: A novel local surface descriptor for 3D object recognition. Pattern Recognition, 2020, 103: 107272

    Article  Google Scholar 

  190. Guo Y. A Comprehensive performance evaluation of 3D local feature de-scriptors. Int J Comput Vision, 2015, 116: 66–89

    Article  Google Scholar 

  191. Yang J, Li H, Campbell D, et al. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Trans Pattern Anal Mach Intell, 2015, 38: 2241–2254

    Article  Google Scholar 

  192. Li W, Xie H, Zhang G, et al. 3-D shape matching of a blade surface in robotic grinding applications. IEEE ASME Trans Mechatron, 2016, 21: 2294–2306

    Article  Google Scholar 

  193. Yang Z, Chu Y, Xu X, et al. Prediction and analysis of material removal characteristics for robotic belt grinding based on single spherical abrasive grain model. Int J Mech Sci, 2021, 190: 106005

    Article  Google Scholar 

  194. Dai J, Su H, Zhou W, et al. Experimental and numerical investigation on the interference of diamond grains in double-grain grinding silicon carbide ceramics. J Manuf Processes, 2019, 44: 408–417

    Article  Google Scholar 

  195. Rososhansky M, Xi F J. Coverage based tool-path planning for automated polishing using contact mechanics theory. J Manuf Syst, 2011, 30: 144–153

    Article  Google Scholar 

  196. Lv Y, Peng Z, Qu C, et al. An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model. Robotics Comput-Integrated Manuf, 2020, 66: 101987

    Article  Google Scholar 

  197. Pandiyan V, Murugan P, Tjahjowidodo T, et al. In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning. Robotics Comput-Integrated Manuf, 2019, 57: 477–487

    Article  Google Scholar 

  198. Gao K, Chen H, Zhang X, et al. A novel material removal prediction method based on acoustic sensing and ensemble XGBoost learning algorithm for robotic belt grinding of Inconel 718. Int J Adv Manuf Technol, 2019, 105: 217–232

    Article  Google Scholar 

  199. Chen F, Zhao H, Li D, et al. Contact force control and vibration suppression in robotic polishing with a smart end effector. Robotics Comput-Integrated Manuf, 2019, 57: 391–403

    Article  Google Scholar 

  200. Ma Z, Poo A N, AngJr. M H, et al. Design and control of an end-effector for industrial finishing applications. Robotics Comput-Integrated Manuf, 2018, 53: 240–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Ding.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52188102, 52090054 and 52075205).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, T., Zhao, H. et al. A review of recent advances in machining techniques of complex surfaces. Sci. China Technol. Sci. 65, 1915–1939 (2022). https://doi.org/10.1007/s11431-022-2115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2115-x

Navigation