Skip to main content
Log in

Comparative first-principles study of elastic constants of covalent and ionic materials with LDA, GGA, and meta-GGA functionals and the prediction of mechanical hardness

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Accurate prediction of single-crystal elastic constants is critical for materials design and for understanding phase transition and elastic interactions in materials. In this work, the accuracy of elastic constants calculated with three density functional approximations has been compared, including the local density approximation (LDA), the generalized gradient approximation (GGA), and the recently developed strongly constrained and appropriately normed (SCAN) meta-GGA. The results show that SCAN and PBE describe elastic constants better than LDA. The strong correlation between the mechanical hardness and the stiffness of the softest eigenmode (SSE) has been given for above three density functionals. The correlation is capable of predicting accurately the hardness of covalent, ionic, and mixed covalent-ionic crystals, and providing us a convenient indicator for the discovery of hard or superhard materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nye J F. Physical Properties of Crystals. Oxford: Oxford University Press, 1985

    Google Scholar 

  2. Ashcroft N W, Mermin N D. Solid State Physics. New York: Harcourt College Publishers, 1976

    MATH  Google Scholar 

  3. Mehl M J, Klein B M, Papaconstantopoulos D A. Intermetallic Compounds: Principles and Practices. Vol. 1. Principles. New York: Wiley, 1994

    Google Scholar 

  4. Hirth J P, Lothe J. Theory of Dislocations. New York: Wiley, 1982

    MATH  Google Scholar 

  5. Born M, Huang K. Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press, 1954

    MATH  Google Scholar 

  6. Yu R, Zhu J, Ye H Q. Calculations of single crystal elastic constants made simple. Comput Phys Commun, 2010, 181: 671–675

    Article  MATH  Google Scholar 

  7. Simons G, Wang H. Single Crystal Elastic Constants and Calculated Properties-A Handbook. Cambridge: The MIT Press, 1971

    Google Scholar 

  8. Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 1981, 23: 5048–5079

    Article  Google Scholar 

  9. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article  Google Scholar 

  10. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  Google Scholar 

  11. Sun J, Ruzsinszky A, Perdew J P. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett, 2015, 115: 036402

    Article  Google Scholar 

  12. Sun J, Remsing R C, Zhang Y, et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat Chem, 2016, 8: 831–836

    Article  Google Scholar 

  13. Liu A Y, Cohen M L. Prediction of new low compressibility solids. Science, 1989, 245: 841–842

    Article  Google Scholar 

  14. Teter D M. Computational alchemy: The search for new superhard materials. MRS Bull, 1998, 23: 22–27

    Article  Google Scholar 

  15. Chen X Q, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011, 19: 1275–1281

    Article  Google Scholar 

  16. Yu R, Zhang Q, Zhan Q. Softest elastic mode governs materials hardness. Chin Sci Bull, 2014, 59: 1747–1754

    Article  Google Scholar 

  17. Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  18. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  Google Scholar 

  19. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136: B864–B871

    Article  MathSciNet  Google Scholar 

  20. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  Google Scholar 

  21. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  MathSciNet  Google Scholar 

  22. Xing W, Miao X, Meng F, et al. Crystal structure of and displacive phase transition in tungsten nitride WN. J Alloys Compd, 2017, 722: 517–524

    Article  Google Scholar 

  23. Colmenero F, Bonales L J, Cobos J, et al. Thermodynamic and mechanical properties of the rutherfordine mineral based on density functional theory. J Phys Chem C, 2017, 121: 5994–6001

    Article  Google Scholar 

  24. Xing W, Meng F, Yu R. Strengthening materials by changing the number of valence electrons. Comput Mater Sci, 2017, 129: 252–258

    Article  Google Scholar 

  25. Euchner H, Mayrhofer P H, Riedl H, et al. Solid solution hardening of vacancy stabilized Ti W1-B2. Acta Mater, 2015, 101: 55–61

    Article  Google Scholar 

  26. Xing W, Meng F, Yu R. A new type of vanadium carbide V5C3 and its hardening by tuning Fermi energy. Sci Rep, 2016, 6: 21794

    Article  Google Scholar 

  27. Karki B B, Stixrude L, Clark S J, et al. Structure and elasticity of MgO at high pressure. Am Miner, 1997, 82: 51–60

    Article  Google Scholar 

  28. Gladden J R, So J H, Maynard J D, et al. Reconciliation of ab initio theory and experimental elastic properties of Al2O3. Appl Phys Lett, 2004, 85: 392–394

    Article  Google Scholar 

  29. McNeil L E, Grimsditch M, French R H. Vibrational spectroscopy of aluminum nitride. J Am Ceramic Soc, 1993, 76: 1132–1136

    Article  Google Scholar 

  30. Milman V, Warren M C. Elasticity of hexagonal BeO. J Phys-Condens Matter, 2001, 13: 241–251

    Article  Google Scholar 

  31. Zhang J S, Bass J D, Taniguchi T, et al. Elasticity of cubic boron nitride under ambient conditions. J Appl Phys, 2011, 109: 063521

    Article  Google Scholar 

  32. McSkimin H J, Bond W L. Elastic moduli of diamond. Phys Rev, 1957, 105: 116–121

    Article  Google Scholar 

  33. Lambrecht W R L, Segall B, Methfessel M, et al. Calculated elastic constants and deformation potentials of cubic SiC. Phys Rev B, 1991, 44: 3685–3694

    Article  Google Scholar 

  34. Srinivasa Rao B, Sanyal S P. High pressure elastic constants of NaCl. Phys Stat Sol (b), 1989, 156: K27–K32

    Article  Google Scholar 

  35. Weidner D J, Bass J D, Ringwood A E, et al. The single-crystal elastic moduli of stishovite. J Geophys Res, 1982, 87: 4740–4746

    Article  Google Scholar 

  36. Schall J D, Gao G, Harrison J A. Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential. Phys Rev B, 2008, 77: 115209

    Article  Google Scholar 

  37. Chang R, Graham L J. Low-temperature elastic properties of ZrC and TiC. J Appl Phys, 1966, 37: 3778–3783

    Article  Google Scholar 

  38. Lee M, Gilmore R S. Single crystal elastic constants of tungsten monocarbide. J Mater Sci, 1982, 17: 2657–2660

    Article  Google Scholar 

  39. Gehrsitz S, Sigg H, Herres N, et al. Compositional dependence of the elastic constants and the lattice parameter of AlxGa1−xAs. Phys Rev B, 1999, 60: 11601–11610

    Article  Google Scholar 

  40. Azuhata T, Sota T, Suzuki K. Elastic constants of III-V compound semiconductors: Modification of Keyes’ relation. J Phys-Condens Matter, 1996, 8: 3111–3119

    Article  Google Scholar 

  41. Vogelgesang R, Grimsditch M, Wallace J S. The elastic constants of single crystal β-Si3N4. Appl Phys Lett, 2000, 76: 982–984

    Article  Google Scholar 

  42. Kandil H M, Greiner J D, Smith J F. Single-crystal elastic constants of yttria-stabilized zirconia in the range 20° to 700°C. J Am Ceramic Soc, 1984, 67: 341–346

    Article  Google Scholar 

  43. Polian A, Grimsditch M, Grzegory I. Elastic constants of gallium nitride. J Appl Phys, 1996, 79: 3343–3344

    Article  Google Scholar 

  44. Yourtçu Y K, Miller A J, Saunders G A. Pressure dependence of elastic behaviour and force constants of GaP. J Phys Chem Solids, 1981, 42: 49–56

    Article  Google Scholar 

  45. Bogardus E H. Third-order elastic constants of Ge, MgO, and fused SiO2. J Appl Phys, 1965, 36: 2504–2513

    Article  Google Scholar 

  46. Do E C, Shin Y H, Lee B J. Atomistic modeling of III–V nitrides: Modified embedded-atom method interatomic potentials for GaN, InN and Ga1−xInxN. J Phys: Condens Matter, 2009, 21: 325801

    Google Scholar 

  47. Benckert L, Bäckström G. Elastic constants of KCl and NaCl from brillouin scattering. Phys Scr, 1975, 11: 43–46

    Article  Google Scholar 

  48. Ledbetter H M, Chevacharoenkul S, Davis R F. Monocrystal elastic constants of NbC. J Appl Phys, 1986, 60: 1614–1617

    Article  Google Scholar 

  49. Chen X J, Struzhkin V V, Wu Z, et al. Hard superconducting nitrides. Proc Natl Acad Sci USA, 2005, 102: 3198–3201

    Article  Google Scholar 

  50. Ahuja R, Eriksson O, Wills J M, et al. Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO. Phys Rev B, 1996, 53: 3072–3079

    Article  Google Scholar 

  51. Palko J W, Kriven W M, Sinogeikin S V, et al. Elastic constants of yttria (Y2O3) monocrystals to high temperatures. J Appl Phys, 2001, 89: 7791–7796

    Article  Google Scholar 

  52. Berlincourt D, Jaffe H, Shiozawa L R. Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Phys Rev, 1963, 129: 1009–1017

    Article  Google Scholar 

  53. Råsander M, Moram M A. On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors. J Chem Phys, 2015, 143: 144104

    Article  Google Scholar 

  54. Kitchaev D A, Peng H, Liu Y, et al. Energetics of MnO2 polymorphs in density functional theory. Phys Rev B, 2016, 93: 045132

    Article  Google Scholar 

  55. Remsing R C, Klein M L, Sun J. Dependence of the structure and dynamics of liquid silicon on the choice of density functional approximation. Phys Rev B, 2017, 96: 024203

    Article  Google Scholar 

  56. Buda I G, Lane C, Barbiellini B, et al. Characterization of thin film materials using SCAN meta-GGA, an accurate nonempirical density functional. Sci Rep, 2017, 7: 44766

    Article  Google Scholar 

  57. Zhang Y, Kitchaev D A, Yang J, et al. Efficient first-principles prediction of solid stability: Towards chemical accuracy. npj Comput Mater, 2018, 4: 9

    Article  Google Scholar 

  58. Zhang Y, Sun J, Perdew J P, et al. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA. Phys Rev B, 2017, 96: 035143

    Article  Google Scholar 

  59. Furness J W, Zhang Y, Lane C, et al. An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors. Commun Phys, 2018, 1: 11

    Article  Google Scholar 

  60. Shahi C, Sun J, Perdew J P. Accurate critical pressures for structural phase transitions of group IV, III–V, and II–VI compounds from the SCAN density functional. Phys Rev B, 2018, 97: 094111

    Article  Google Scholar 

  61. Gao F, He J, Wu E, et al. Hardness of covalent crystals. Phys Rev Lett, 2003, 91: 015502

    Article  Google Scholar 

  62. Šimůnek A, Vackár J. Hardness of covalent and ionic crystals: First-principle calculations. Phys Rev Lett, 2006, 96: 085501

    Article  Google Scholar 

  63. Chung H Y, Weinberger M B, Levine J B, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science, 2007, 316: 436–439

    Article  Google Scholar 

  64. Chung H Y, Weinberger M B, Yang J M, et al. Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2. Appl Phys Lett, 2008, 92: 261904

    Article  Google Scholar 

  65. Hao X, Xu Y, Wu Z, et al. Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study. Phys Rev B, 2006, 74: 224112

    Article  Google Scholar 

  66. Gou H, Hou L, Zhang J, et al. Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness. Appl Phys Lett, 2008, 92: 241901

    Article  Google Scholar 

  67. Fu H, Peng W, Gao T. Structural and elastic properties of ZrC under high pressure. Mater Chem Phys, 2009, 115: 789–794

    Article  Google Scholar 

  68. Yao H, Ouyang L, Ching W Y. Ab initio calculation of elastic constants of ceramic crystals. J Am Ceramic Soc, 2007, 90: 3194–3204

    Article  Google Scholar 

  69. He D, Zhao Y, Daemen L, et al. Boron suboxide: As hard as cubic boron nitride. Appl Phys Lett, 2002, 81: 643–645

    Article  Google Scholar 

  70. Bolmgren H, Lundstrom T, Okada S. Structure refinement of the boron suboxide B6O by the Rietveld method. AIP Conf Proc, 1991, 231: 197–200

    Article  Google Scholar 

  71. La Placa S J, Post B. The crystal structure of rhenium diboride. Acta Cryst, 1962, 15: 97–99

    Article  Google Scholar 

  72. Krikorian N H, Wallace T C, Anderson J L. Low-temperature thermal expansion of the group 4a carbides. J Electrochem Soc, 1963, 110: 587–588

    Article  Google Scholar 

  73. Levine J B, Betts J B, Garrett J D, et al. Full elastic tensor of a crystal of the superhard compound ReB2. Acta Mater, 2010, 58: 1530–1535

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FanYan Meng or Rong Yu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51788104, 51871021 and 51525102), and the Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-19-017A). In this work we used the resources of the Shanghai Supercomputer Center, and Tsinghua National Laboratory for Information Science and Technology.

Supplementary information for

11431_2021_1825_MOESM1_ESM.doc

Comparative first-principles study of elastic constants of covalent and ionic materials with LDA, GGA, and meta-GGA functionals and the prediction of mechanical hardness

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Meng, F., Ning, J. et al. Comparative first-principles study of elastic constants of covalent and ionic materials with LDA, GGA, and meta-GGA functionals and the prediction of mechanical hardness. Sci. China Technol. Sci. 64, 2755–2761 (2021). https://doi.org/10.1007/s11431-021-1825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1825-x

Keywords

Navigation