Skip to main content
Log in

Elasticity of high-entropy alloys from ab initio theory

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) consisting of multiprincipal elements have demonstrated many interesting structural, physical, and chemical properties for a wide range of applications. This article is a review of the current theoretical research on the elastic parameters of HEAs. The performance of various ab initio-based computational models (effective medium and supercell approaches) is carefully analyzed. Representative theoretical elastic parameters of different HEAs, including single-crystal elastic constants, polycrystalline elastic moduli, elastic anisotropy, and Debye temperature, are presented and discussed. For comparison, simple mixtures of the elastic moduli of pure elements are calculated and contrasted with the ab initio results. The present work provides a reference for future theoretical investigation of the micromechanical properties of systems based on HEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  4. J.W. Yeh: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).

    Article  CAS  Google Scholar 

  5. M.H. Tsai and J.W. Yeh: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).

    Article  Google Scholar 

  6. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  7. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).

    Article  CAS  Google Scholar 

  8. E.J. Pickering and N.G. Jones: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).

    Article  CAS  Google Scholar 

  9. H.Y. Diao, R. Feng, K.A. Dahmen, and P.K. Liaw: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).

    Article  CAS  Google Scholar 

  10. C.M. Gao and E.D. Alman: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).

    Article  CAS  Google Scholar 

  11. S. Gorsse, D.B. Miracle, and O.N. Senkov: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).

    Article  CAS  Google Scholar 

  12. B. Cantor: Multicomponent and high entropy alloys. Entropy 16, 4749 (2014).

    Article  Google Scholar 

  13. M.C. Gao, P. Gao, J.A. Hawk, L. Ouyang, D.E. Alman, and M. Widom: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).

    Article  CAS  Google Scholar 

  14. F. Tian: A review of solid-solution models of high-entropy alloys based on ab initio calculations. Front. Mater. 4, 36 (2017).

    Article  Google Scholar 

  15. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang: High-Entropy Alloys: Fundamentals and Applications (Springer, Switzerland, 2016).

    Book  Google Scholar 

  16. Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131 (2014).

    Article  CAS  Google Scholar 

  17. F. Otto, Y. Yang, H. Bei, and E.P. George: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).

    Article  CAS  Google Scholar 

  18. Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).

    Article  CAS  Google Scholar 

  19. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).

    Article  CAS  Google Scholar 

  20. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).

    Article  CAS  Google Scholar 

  21. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043 (2011).

    Article  CAS  Google Scholar 

  22. H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 696, 1139 (2017).

    Article  CAS  Google Scholar 

  23. Y. Yuan, Y. Wu, X. Tong, H. Zhang, H. Wang, X.J. Liu, L. Ma, H.L. Suo, and Z.P. Lu: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).

    Article  CAS  Google Scholar 

  24. Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, and Y. Zhang: A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96, 10 (2016).

    Article  CAS  Google Scholar 

  25. M. Feuerbacher, M. Heidelmann, and C. Thomas: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2015).

    Article  Google Scholar 

  26. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 1984 (2014).

    Article  CAS  Google Scholar 

  27. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chang: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).

    Article  Google Scholar 

  28. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).

    Article  CAS  Google Scholar 

  29. H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng., B 163, 184 (2009).

    Article  CAS  Google Scholar 

  30. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  31. C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, and S.Y. Chang: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  32. A. Gali and E.P. George: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).

    Article  CAS  Google Scholar 

  33. M.H. Tsai, C.W. Wang, C.W. Tsai, W.J. Shen, J.W. Yeh, J.Y. Gan, and W.W. Wu: Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J. Electrochem. Soc. 158, H1161 (2011).

    Article  CAS  Google Scholar 

  34. Y.L. Chou, Y.C. Wang, J.W. Yeh, and H.C. Shih: Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros. Sci. 52, 3481 (2010).

    Article  CAS  Google Scholar 

  35. Y.F. Kao, T.D. Lee, S.K. Chen, and Y.S. Chang: Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros. Sci. 52, 1026 (2010).

    Article  CAS  Google Scholar 

  36. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).

    Article  CAS  Google Scholar 

  37. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).

    Article  CAS  Google Scholar 

  38. P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).

    Article  Google Scholar 

  39. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, and D. Raabe: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).

    Article  CAS  Google Scholar 

  40. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).

    Article  CAS  Google Scholar 

  41. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).

    Article  CAS  Google Scholar 

  42. O.N. Senkov, S.V. Senkova, and C. Woodward: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).

    Article  CAS  Google Scholar 

  43. C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, and J.W. Yeh: Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys. Adv. Eng. Mater. 12, 44 (2010).

    Article  CAS  Google Scholar 

  44. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  45. S.F. Pugh: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  46. W. Kohn: Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999).

    Article  CAS  Google Scholar 

  47. S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, and L. Vitos: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 44 (2015).

    Article  CAS  Google Scholar 

  48. S. Huang, W. Li, X. Li, S. Schönecker, L. Bergqvist, E. Holmström, L.K. Varga, and L. Vitos: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. Des. 103, 71 (2016).

    Article  CAS  Google Scholar 

  49. S. Huang, Á. Vida, D. Molnár, K. Kádas, L.K. Varga, E. Holmström, and L. Vitos: Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy. Appl. Phys. Lett. 107, 251906 (2015).

    Article  Google Scholar 

  50. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).

    Article  CAS  Google Scholar 

  51. C. Niu, A.J. Zaddach, C.C. Koch, and D.L. Irving: First principles exploration of near-equiatomic NiFeCrCo high entropy alloys. J. Alloys Compd. 672, 510 (2016).

    Article  CAS  Google Scholar 

  52. R. Feng, P.K. Liaw, M.C. Gao, and M. Widom: First-principles prediction of high-entropy-alloy stability. npj Comput. Mater. 3, 50 (2017).

    Article  Google Scholar 

  53. P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  54. W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  55. L. Vitos: Computational Quantum Mechanics for Materials Engineers (Springer, London, 2007).

    Google Scholar 

  56. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  57. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  58. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  59. P. Soven: Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809 (1967).

    Article  CAS  Google Scholar 

  60. B.L. Győrffy: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. Phys. Rev. B 5, 2382 (1972).

    Article  Google Scholar 

  61. L. Vitos, I.A. Abrikosov, and B. Johansson: Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 87, 156401 (2001).

    Article  CAS  Google Scholar 

  62. L. Nordheim: Zur elektronentheorie der metalle. I. Ann. Phys. 401, 607 (1931).

    Article  Google Scholar 

  63. K.F. Stripp and J.G. Kirkwood: Lattice vibrational spectrum of imperfect crystals. J. Chem. Phys. 22, 1579 (1954).

    Article  CAS  Google Scholar 

  64. P.J. Wojtowicz and J.G. Kirkwood: Contribution of lattice vibrations to the order-disorder transformation in alloys. J. Chem. Phys. 33, 1299 (1960).

    Article  CAS  Google Scholar 

  65. L. Bellaiche and D. Vanderbilt: Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 61, 7877 (2000).

    Article  CAS  Google Scholar 

  66. A. Zunger, S.H. Wei, L.G. Ferreira, and J.E. Bernard: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).

    Article  CAS  Google Scholar 

  67. C. Jiang and B.P. Uberuaga: Efficient ab initio modeling of random multicomponent alloys. Phys. Rev. Lett. 116, 105501 (2016).

    Article  Google Scholar 

  68. H. Song, F. Tian, Q.M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017).

    Article  Google Scholar 

  69. J.M. Sanchez, F. Ducastelle, and D. Gratias: Generalized cluster description of multicomponent systems. Phys. A 128, 334 (1984).

    Article  Google Scholar 

  70. J.W.D. Connolly and A.R. Williams: Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27, 5169 (1983).

    Article  CAS  Google Scholar 

  71. D.B. Laks, L.G. Ferreira, S. Froyen, and A. Zunger: Efficient cluster expansion for substitutional systems. Phys. Rev. B 46, 12587 (1992).

    Article  CAS  Google Scholar 

  72. S.H. Wei, L.G. Ferreira, J.E. Bernard, and A. Zunger: Electronic properties of random alloys: Special quasirandom structures. Phys. Rev. B 42, 9622 (1990).

    Article  CAS  Google Scholar 

  73. A. van de Walle, M. Asta, and G. Ceder: The alloy theoretic automated toolkit: A user guide. Calphad 26, 539 (2002).

    Article  Google Scholar 

  74. A. van de Walle: Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 33, 266 (2009).

    Article  Google Scholar 

  75. A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, and Z.K. Liu: Efficient stochastic generation of special quasirandom structures. Calphad 42, 13 (2013).

    Article  Google Scholar 

  76. L.Y. Tian, G.S. Wang, J.S. Harris, D.L. Irving, J.J. Zhao, and L. Vitos: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).

    Article  CAS  Google Scholar 

  77. B.L. Győrffy, A.J. Pindor, J. Staunton, G.M. Stocks, and H. Winter: A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F: Met. Phys. 15, 1337 (1985).

    Article  Google Scholar 

  78. J. Staunton, B.L. Gyorffy, A.J. Pindor, G.M. Stocks, and H. Winter: The “disordered local moment” picture of itinerant magnetism at finite temperatures. J. Magn. Magn. Mater. 45, 15 (1984).

    Article  CAS  Google Scholar 

  79. F.J. Pinski, J. Staunton, B.L. Győrffy, D.D. Johnson, and G.M. Stocks: Ferromagnetism versus antiferromagnetism in face-centered-cubic iron. Phys. Rev. Lett. 56, 2096 (1986).

    Article  CAS  Google Scholar 

  80. S.Y. Chen, X. Yang, K.A. Dahmen, P.K. Liaw, and Y. Zhang: Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy. 16, 870 (2014).

    Article  Google Scholar 

  81. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr.–Cryst. Mater. 220, 567 (2005).

    Article  CAS  Google Scholar 

  82. F. Tian, D. Wang, J. Shen, and Y. Wang: An ab initio investgation of ideal tensile and shear strength of TiVNbMo high-entropy alloy. Mater. Lett. 166, 271 (2016).

    Article  CAS  Google Scholar 

  83. K.A. Gschneidner: Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys. 16, 275 (1964).

    Article  CAS  Google Scholar 

  84. F.Y. Tian, L.K. Varga, N. Chen, L. Delczeg, and L. Vitos: Ab initio investigation of high-entropy alloys of 3 d elements. Phys. Rev. B 87, 075144 (2013).

    Article  Google Scholar 

  85. M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Muñoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, and E. Karapetrova: Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl. Phys. Lett. 100, 251907 (2012).

    Article  Google Scholar 

  86. Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, and S.J. Lin: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509, 1607 (2011).

    Article  CAS  Google Scholar 

  87. M.S. Lucas, D. Belyea, C. Bauer, N. Bryant, E. Michel, Z. Turgut, S.O. Leontsev, J. Horwath, S.L. Semiatin, M.E. McHenry, and C.W. Miller: Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys. J. Appl. Phys. 113, 17A923 (2013).

    Article  Google Scholar 

  88. S. Huang, E. Holmström, O. Eriksson, and L. Vitos: Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 95, 80 (2018).

    Article  CAS  Google Scholar 

  89. C. Niu, A.J. Zaddach, A.A. Oni, X. Sang, J.W. Hurt, J.M. LeBeau, C.C. Koch, and D.L. Irving: Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 106, 161906 (2015).

    Article  Google Scholar 

  90. M.S. Lucas, L. Mauger, J.A. Muñoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut: Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 07E307 (2011).

    Article  Google Scholar 

  91. S.Q. Wang: Atomic structure modeling of multi-principal-element alloys by the principle of maximum entropy. Entropy. 15, 5536 (2013).

    Article  CAS  Google Scholar 

  92. S.M. Zheng, W.Q. Feng, and S.Q. Wang: Elastic properties of high entropy alloys by MaxEnt approach. Comput. Mater. Sci. 142, 332 (2018).

    Article  CAS  Google Scholar 

  93. Y. Zhang, X. Yang, and P.K. Liaw: Alloy design and properties optimization of high-entropy alloys. JOM 64, 830 (2012).

    Article  CAS  Google Scholar 

  94. Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 83, 651 (2015).

    Article  CAS  Google Scholar 

  95. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter: Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103 (2005).

    Article  CAS  Google Scholar 

  96. M. Widom, W.P. Huhn, S. Maiti, and W. Steurer: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).

    Article  CAS  Google Scholar 

  97. M. Widom: Entropy and diffuse scattering: Comparison of NbTiVZr and CrMoNbV. Metall. Mater. Trans. A 47, 3306 (2016).

    Article  CAS  Google Scholar 

  98. B. Feng and M. Widom: Elastic stability and lattice distortion of refractory high entropy alloys. Mater. Chem. Phys. 210, 309 (2017).

    Article  Google Scholar 

  99. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51 (2013).

    Article  CAS  Google Scholar 

  100. M. Hebbache and M. Zemzemi: Ab initio study of high-pressure behavior of a low compressibility metal and a hard material: Osmium and diamond. Phys. Rev. B 70, 224107 (2004).

    Article  Google Scholar 

  101. M.C. Gao, Y. Suzuki, H. Schweiger, Ö.N. Doğan, J. Hawk, and M. Widom: Phase stability and elastic properties of Cr–V alloys. J. Phys.: Condens. Matter 25, 075402 (2013).

    CAS  Google Scholar 

  102. F.Y. Tian, Y. Wang, and L. Vitos: Impact of aluminum doping on the thermo-physical properties of refractory medium-entropy alloys. J. Appl. Phys. 121, 015105 (2017).

    Article  Google Scholar 

  103. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, and M.A. Tikhonovsky: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).

    Article  CAS  Google Scholar 

  104. N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).

    Article  CAS  Google Scholar 

  105. P. Söderlind, O. Eriksson, J.M. Wills, and A.M. Boring: Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 48, 5844 (1993).

    Article  Google Scholar 

  106. S. Huang, Á. Vida, W. Li, D. Molnár, S.K. Kwon, E. Holmström, B. Varga, L.K. Varga, and L. Vitos: Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment. Appl. Phys. Lett. 110, 241902 (2017).

    Article  Google Scholar 

  107. Á. Vida, L.K. Varga, N.Q. Chinh, D. Molnár, S. Huang, and L. Vitos: Effects of the sp element additions on the microstructure and mechanical properties of NiCoFeCr based high entropy alloys. Mater. Sci. Eng., A 669, 14 (2016).

    Article  CAS  Google Scholar 

  108. F.Y. Tian, L. Delczeg, N.X. Chen, L.K. Varga, J. Shen, and L. Vitos: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).

    Article  Google Scholar 

  109. S. Huang, X. Li, H. Huang, E. Holmström, and L. Vitos: Mechanical performance of FeCrCoMnAlx high-entropy alloys from first-principle. Mater. Chem. Phys. 210, 37 (2018).

    Article  CAS  Google Scholar 

  110. F. Tian, L.K. Varga, N. Chen, J. Shen, and L. Vitos: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).

    Article  CAS  Google Scholar 

  111. P.Y. Cao, X.D. Ni, F.Y. Tian, L.K. Varga, and L. Vitos: Ab initio study of AlxMoNbTiV high-entropy alloys. J. Phys.: Condens. Matter 27, 075401 (2015).

    CAS  Google Scholar 

  112. S. Qiu, N. Miao, J. Zhou, Z. Guo, and Z. Sun: Strengthening mechanism of aluminum on elastic properties of NbVTiZr high-entropy alloys. Intermetallics 92, 7 (2018).

    Article  CAS  Google Scholar 

  113. W.Q. Feng, Y. Qi, and S.Q. Wang: Effects of short-range order on the magnetic and mechanical properties of FeCoNi(AlSi)x high entropy alloys. Metals 7 (2017).

  114. F.Y. Tian, L.K. Varga, J. Shen, and L. Vitos: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350 (2016).

    Article  CAS  Google Scholar 

  115. H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).

    Article  Google Scholar 

  116. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  117. Z.J. Wang, S. Guo, and C.T. Liu: Phase selection in high-entropy alloys: From nonequilibrium to equilibrium. JOM 66, 1966 (2014).

    Article  Google Scholar 

  118. S. Guo and C.T. Liu: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

  119. L. Liu, J.B. Zhu, C. Zhang, J.C. Li, and Q. Jiang: Microstructure and the properties of FeCoCuNiSnx high entropy alloys. Mater. Sci. Eng., A 548, 64 (2012).

    Article  Google Scholar 

  120. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).

    Article  CAS  Google Scholar 

  121. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).

    Article  CAS  Google Scholar 

  122. L. Liu, J.B. Zhu, L. Li, J.C. Li, and Q. Jiang: Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys. Mater. Des. 44, 223 (2013).

    Article  CAS  Google Scholar 

  123. S. Praveen, B.S. Murty, and R.S. Kottada: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).

    Article  CAS  Google Scholar 

  124. S. Huang, Á. Vida, A. Heczel, E. Holmström, and L. Vitos: Thermal expansion, elastic and magnetic properties of FeCoNiCu-based high-entropy alloys using first-principle theory. JOM 69, 2107 (2017).

    Article  CAS  Google Scholar 

  125. K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633 (2010).

    Article  CAS  Google Scholar 

  126. G. Simmons: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, 1971).

    Google Scholar 

  127. J.F. Nye: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985).

    Google Scholar 

  128. G. Grimvall: Thermophysical Properties of Materials (North-Holland, Amsterdam, 1999).

    Google Scholar 

  129. G. Steinle-Neumann, L. Stixrude, and R.E. Cohen: First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure. Phys. Rev. B 60, 791 (1999).

    Article  CAS  Google Scholar 

  130. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., Sect. A 65, 349 (1952).

    Article  Google Scholar 

  131. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  132. F. Tian, L.K. Varga, and L. Vitos: Predicting single phase CrMoWX high entropy alloys from empirical relations in combination with first-principles calculations. Intermetallics 83, 9 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, the Swedish Foundation for International Cooperation in Research and Higher Education, the Carl Tryggers Foundation, the Sweden’s Innovation Agency (VINNOVA Grant No. 2014-03374), the Swedish Energy Agency, the National Natural Science Foundation of China (Grant Nos. 51771015 and 51401014), the China Scholarship Council, and the Hungarian Scientific Research Fund (OTKA 109570). We acknowledge the Swedish National Supercomputer Center in Linköping and Stockholm for computer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Huang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Tian, F. & Vitos, L. Elasticity of high-entropy alloys from ab initio theory. Journal of Materials Research 33, 2938–2953 (2018). https://doi.org/10.1557/jmr.2018.237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.237

Navigation