Skip to main content
Log in

Tsunami hazard assessment in the South China Sea: A review of recent progress and research gaps

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The South China Sea region is potentially threatened by tsunami hazards originated from multiple sources: the Manila subduction zone in the east, the Littoral Fault Zone (LFZ) in the north, numerous submarine landslides on the continental slopes and the volcanic islands in the Luzon Strait. Infrequent but potentially devastating tsunami hazard poses a great threat to the populous coastal region, fishery, oil and gas exploitation in the deep sea, etc. Here we review the recent progress in tsunami hazard assessment in the South China Sea region, focusing on two primary sources: submarine earthquakes and landslides. We sort and review the literature by the two commonly used approaches: deterministic and probabilistic tsunami hazard assessment for both source types. By simulating tsunamis generated by typical earthquakes originated from the Manila Trench, the LFZ and landslides in the continental slopes, we investigate their tsunamigenic mechanism and key tsunami characteristics in the South China Sea region. We point out the research gaps and highlight the key issues to be addressed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammon C J, Kanamori H, Lay T. 2008. A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. Nature, 451: 561–565

    Article  Google Scholar 

  • An C. 2021. Tsunamis and tsunami warning: Recent progress and future prospects. Sci China Earth Sci, 64: 191–204

    Article  Google Scholar 

  • Armada L. 2016. Crustal structure and deformation in the Manila subduction zone. Tectonophysics, 466: 229–240

    Google Scholar 

  • Atwater B F, Musumi-Rokkaku S, Satake K, Tsuji Y, Ueda K, Yamaguchi D. 2005. The Orphan Tsunami of 1700: Japanese clues to a parent earthquake in North America. US Geological Survey Professional Paper, 1707: 3–123

    Google Scholar 

  • Basili R, Brizuela B, Herrero A, Iqbal S, Lorito S, Maesano F E, Murphy S, Perfetti P, Romano F, Scala A, Selva J, Taroni M, Tiberti M M, Thio H K, Tonini R, Volpe M, Glimsdal S, Harbitz C B, Løvholt F, Baptista M A, Carrilho F, Matias L M, Omira R, Babeyko A, Hoechner A, Gürbüz M, Pekcan O, Yalçıner A, Canals M, Lastras G, Agalos A, Papadopoulos G, Triantafyllou I, Benchekroun S, Agrebi Jaouadi H, Ben Abdallah S, Bouallegue A, Hamdi H, Oueslati F, Amato A, Armigliato A, Behrens J, Davies G, Di Bucci D, Dolce M, Geist E, Gonzalez Vida J M, González M, Macías Sánchez J, Meletti C, Ozer Sozdinler C, Pagani M, Parsons T, Polet J, Power W, Sørensen M, Zaytsev A. 2021. The making of the NEAM tsunami hazard model 2018 (NEAMTHM18). Front Earth Sci, 8: 1

    Article  Google Scholar 

  • Bautista M L P, Bartolome C, Bautista, Salcedo J C, Narag I. 2012. Philippine Tsunamis and Seiches. Philippine Institute of Volcanology and Seismology

  • Behrens J, Løvholt F, Jalayer F, Lorito S, Salgado-Gálvez M A, Sørensen M, Abadie S, Aguirre-Ayerbe I, Aniel-Quiroga I, Babeyko A, Baiguera M, Basili R, Belliazzi S, Grezio A, Johnson K, Murphy S, Paris R, Rafliana I, De Risi R, Rossetto T, Selva J, Taroni M, Del Zoppo M, Armigliato A, Bureš V, Cech P, Cecioni C, Christodoulides P, Davies G, Dias F, Bayraktar H B, González M, Gritsevich M, Guillas S, Harbitz C B, Kânoğlu U, Macías J, Papadopoulos G A, Polet J, Romano F, Salamon A, Scala A, Stepinac M, Tappin D R, Thio H K, Tonini R, Triantafyllou I, Ulrich T, Varini E, Volpe M, Vyhmeister E. 2021. Probabilistic tsunami hazard and risk analysis: A review of research gaps. Front Earth Sci, 9: 1

    Article  Google Scholar 

  • Bilek S L, Lay T. 2018. Subduction zone megathrust earthquakes. Geosphere, 14: 1468–1500

    Article  Google Scholar 

  • Bletery Q, Thomas A M, Rempel A W, Karlstrom L, Sladen A, De Barros L. 2016. Mega-earthquakes rupture flat megathrusts. Science, 354: 1027–1031

    Article  Google Scholar 

  • Cao J, Sun J, Xu H, Xia S. 2014. Seismognical features of the Littoral Fault Zone in the Pearl River Estuary(in Chinese). ChinJ Geophys, 57: 498–508

    Google Scholar 

  • Cao J, Xia S, Sun J, Zhao F, Wan K, Xu H. 2018. Offshore fault geometrics in the Pearl River Estuary, Southeastern China: Evidence from seismic reflection data. J Ocean Univ China, 17: 799–810

    Article  Google Scholar 

  • Chamot-Rooke N, Le Pichon X. 1999. GPS determined eastward Sundaland motion with respect to Eurasia confirmed by earthquakes slip vectors at Sunda and Philippine trenches. Earth Planet Sci Lett, 173: 439–455

    Article  Google Scholar 

  • Chen C, Wu S, Zhao C. 2014. Incoming plate variation along the northern Manila Trench (in Chinese). Chin J Geophys, 57: 4063–4073

    Google Scholar 

  • Chen D, Wang X, Völker D, Wu S, Wang L, Li W, Li Q, Zhu Z, Li C, Qin Z, Sun Q. 2016. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea. Mar Pet Geol, 77: 1125–1139

    Article  Google Scholar 

  • Chen E, Huang Y. 1984. Review of the 19 large earthquakes in southern China and the seismic belt in northern South China Sea (in Chinese). South China J Seismol, 4: 14–35

    Google Scholar 

  • Chen E, Huang Y. 1989. The seismogenic structure and seismic hazard charateristic of the 1605 Qionghai earthquake(in Chinese). Acta Seismol Sin, 3: 319–331

    Google Scholar 

  • Cheng G Y. 1830. Taiwan Interview Catalogue (in Chinese)

  • Chen H, He X, Yang H, Zhang J. 2021. Fault-plane determination of the 4 January 2020 offshore Pearl River Delta earthquake and its implication for seismic hazard assessment. Seismol Res Lett, 92: 1913–1925

    Article  Google Scholar 

  • Chen Y, Chen Q, Zhang W. 2007. Tsunami disaster in China (in Chinese). J Nat Disast, 16: 1–6

    Google Scholar 

  • Cisternas M, Atwater B F, Torrejón F, Sawai Y, Machuca G, Lagos M, Eipert A, Youlton C, Salgado I, Kamataki T, Shishikura M, Rajendran C P, Malik J K, Rizal Y, Husni M. 2005. Predecessors of the giant 1960 Chile earthquake. Nature, 437: 404–407

    Article  Google Scholar 

  • Davies G, Griffin J. 2018. The 2018 Australian probabilistic tsunami hazard assessment: Hazard from earthquake generated tsunamis. Pure Appl Geophys, 177: 1–28

    Google Scholar 

  • Davies G, Griffin J. 2020. Sensitivity of probabilistic tsunami hazard assessment to far-field earthquake slip complexity and rigidity depth-dependence: Case study of Australia. Pure Appl Geophys, 177: 1521–1548

    Article  Google Scholar 

  • Dogan G G, Yalciner A C, Yuksel Y, Ulutaş E, Polat O, Güler I ı, Şahin C, Tarih A, Kânoğlu U. 2021. The 30 October 2020 Aegean Sea tsunami: Post-event field survey along Turkish Coast. Pure Appl Geophys, 178: 785–812

    Article  Google Scholar 

  • Dominey-Howes D T M, Humphreys G S, Hesse P P. 2006. Tsunami and palaeotsunami depositional signatures and their potential value in understanding the late-Holocene tsunami record. Holocene, 16: 1095–1107

    Article  Google Scholar 

  • Enet F, Grilli S T. 2007. Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J Water Port Coast Ocean Eng, 133: 442–454

    Article  Google Scholar 

  • Fan W, Bassett D, Jiang J, Shearer P M, Ji C. 2017. Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults. Tectonophysics, 721: 143–150

    Article  Google Scholar 

  • Fine I V, Rabinovich A B, Bornhold B D, Thomson R E, Kulikov E A. 2005. The Grand Banks landslide-generated tsunami of November 18, 1929: Preliminary analysis and numerical modeling. Mar Geol, 215: 45–57

    Article  Google Scholar 

  • Fine I V, Rabinovich A B, Thomson R E, Kulikov E A. 2003. Numerical modeling of tsunami generation by submarine and subaerial landslides. Submar Landsl Tsunamis, 21: 69–88

    Article  Google Scholar 

  • Fukutani Y, Suppasri A, Imamura F. 2014. Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohoku-type earthquake fault. Stoch Environ Res Risk Assess, 29: 1763–1779

    Article  Google Scholar 

  • Gagnon K, Chadwell C D, Norabuena E. 2005. Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements. Nature, 434: 205–208

    Article  Google Scholar 

  • Gao J, Wu S, Yao Y, Chen C, Song T, Wang J, Sun J, Zhang H, Ma B, Xie Y. 2018. Tectonic deformation and fine structure of the frontal accretionary wedge, northern Manila subduction zone (in Chinese). Chin J Geophys, 61: 2845–2858

    Google Scholar 

  • Gee M J R, Uy H S, Warren J, Morley C K, Lambiase J J. 2007. The Brunei slide: A giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data. Mar Geol, 246: 9–23

    Article  Google Scholar 

  • Geersen J. 2019. Sediment-starved trenches and rough subducting plates are conducive to tsunami earthquakes. Tectonophysics, 762: 28–44

    Article  Google Scholar 

  • Geist E L, Lynett P J, Chaytor J D. 2009. Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar Geol, 264: 41–52

    Article  Google Scholar 

  • Geist E, Lynett P. 2014. Source processes for the probabilistic assessment of tsunami hazards. Oceanography, 27: 86–93

    Article  Google Scholar 

  • Geist E L, Parsons T E. 2010. Estimating the empirical probability of submarine landslide occurrence. Submar Mass Movement Their Consequences, 28: 377–386

    Article  Google Scholar 

  • Geist E L. 2002. Complex earthquake rupture and local tsunamis. J Geophys Res, 107: 2086

    Article  Google Scholar 

  • Gibbons S J, Lorito S, Macías J, Løvholt F, Selva J, Volpe M, Sánchez-Linares C, Babeyko A, Brizuela B, Cirella A, Castro M J, de la Asunción M, Lanucara P, Glimsdal S, Lorenzino M C, Nazaria M, Pizzimenti L, Romano F, Scala A, Tonini R, Manuel González Vida J, Vöge M. 2020. Probabilistic tsunami hazard analysis: High performance computing for massive scale inundation simulations. Front Earth Sci, 8: 1

    Article  Google Scholar 

  • Goda K, Song J. 2016. Uncertainty modeling and visualization for tsunami hazard and risk mapping: A case study for the 2011 Tohoku earthquake. Stoch Environ Res Risk Assess, 30: 2271–2285

    Article  Google Scholar 

  • Goda K, Yasuda T, Mori N, Mai P M. 2015. Variability of tsunami inundation footprints considering stochastic scenarios based on a single rupture model: Application to the 2011 Tohoku earthquake. J Geophys Res-Oceans, 120: 4552–4575

    Article  Google Scholar 

  • Goff J, Chagué-Goff C, Dominey-Howes D, McAdoo B, Cronin S, Bonté-Grapetin M, Nichol S, Horrocks M, Cisternas M, Lamarche G, Pelletier B, Jaffe B, Dudley W. 2011. Palaeotsunamis in the Pacific Islands. Earth-Sci Rev, 107: 141–146

    Article  Google Scholar 

  • González F I, Geist E L, Jaffe B, Kânoğlu U, Mofjeld H, Synolakis C E, Titov V V, Arcas D, Bellomo D, Carlton D, Horning T, Johnson J, Newman J, Parsons T, Peters R, Peterson C, Priest G, Venturato A, Weber J, Wong F, Yalciner A. 2009. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. J Geophys Res, 114: C11023

    Article  Google Scholar 

  • González M, Álvarez-Gómez J A, Aniel-Quiroga Í, Otero L, Olabarrieta M, Omira R, Luceño A, Jelinek R, Krausmann E, Birkman J, Baptista M A, Miranda M, Aguirre-Ayerbe I. 2021. Probabilistic tsunami hazard assessment in meso and macro tidal areas. Application to the Cádiz Bay, Spain. Front Earth Sci, 9: 328

    Article  Google Scholar 

  • Goto K, Sugawara D, Ikema S, Miyagi T. 2012. Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohokuoki tsunami at Sabusawa Island, Japan. Sediment Geol, 282: 188–198

    Article  Google Scholar 

  • Grezio A, Babeyko A, Baptista M A, Behrens J, Costa A, Davies G, Geist E L, Glimsdal S, González F I, Griffin J, Harbitz C B, LeVeque R J, Lorito S, Løvholt F, Omira R, Mueller C, Paris R, Parsons T, Polet J, Power W, Selva J, Sørensen M B, Thio H K. 2017. Probabilistic tsunami hazard analysis: Multiple sources and global applications. Rev Geophys, 55: 1158–1198

    Article  Google Scholar 

  • Grezio A, Cinti F R, Costa A, Faenza L, Perfetti P, Pierdominici S, Pondrelli S, Sandri L, Tierz P, Tonini R, Selva J. 2020. Multisource Bayesian probabilistic tsunami hazard analysis for the Gulf of Naples (Italy). J Geophys Res-Oceans, 125: e2019JC015373

    Article  Google Scholar 

  • Grezio A, Sandri L, Marzocchi W, Argnani A, Gasparini P, Selva J. 2012. Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy). Nat Hazards, 64: 329–358

    Article  Google Scholar 

  • Grilli S T, Taylor O D S, Baxter C D P, Maretzki S. 2009. A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Mar Geol, 264: 74–97

    Article  Google Scholar 

  • Grilli S T, Shelby M, Kimmoun O, Dupont G, Nicolsky D, Ma G, Kirby J T, Shi F. 2017. Modeling coastal tsunami hazard from submarine mass failures: Effect of slide rheology, experimental validation, and case studies off the US East Coast. Nat Hazards, 86: 353–391

    Article  Google Scholar 

  • Hananto N D, Leclerc F, Li L, Etchebes M, Carton H, Tapponnier P, Qin Y, Avianto P, Singh S C, Wei S. 2020. Tsunami earthquakes: Vertical popup expulsion at the forefront of subduction megathrust. Earth Planet Sci Lett, 538: 116197

    Article  Google Scholar 

  • Harbitz C B, Løvholt F, Bungum H. 2014. Submarine landslide tsunamis: How extreme and how likely? Nat Hazards, 72: 1341–1374

    Article  Google Scholar 

  • He Y, Zhong G, Wang L, Kuang Z. 2014. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea. Mar Pet Geol, 57: 546–560

    Article  Google Scholar 

  • Heidarzadeh M, Satake K. 2014. Excitation of basin-wide modes of the Pacific Ocean following the March 2011 Tohoku tsunami. Pure Appl Geophys, 171: 3405–3419

    Article  Google Scholar 

  • Hill E M, Borrero J C, Huang Z, Qiu Q, Banerjee P, Natawidjaja D H, Elosegui P, Fritz H M, Suwargadi B W, Pranantyo I R, Li L L, Macpherson K A, Skanavis V, Synolakis C E, Sieh K. 2012. The 2010 Mw7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. J Geophys Res, 117: B06402

    Google Scholar 

  • Hsu S K, Kuo J, Yeh Y C, Tsai C H, Doo W, Ku C Y, Sibuet J C. 2008. Turbidity currents, submarine landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terr Atmos Ocean Sci, 19: 767–772

    Article  Google Scholar 

  • Hsu Y J, Yu S B, Song T R A, Bacolcol T. 2012. Plate coupling along the Manila subduction zone between Taiwan and northern Luzon. J Asian Earth Sci, 51: 98–108

    Article  Google Scholar 

  • Hsu Y J, Yu S B, Loveless J P, Bacolcol T, Solidum R, Luis Jr A, Pelicano A, Woessner J. 2016. Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system. J Geophys Res-Solid Earth, 121: 7639–7665

    Article  Google Scholar 

  • Huang X, Betzler C, Wu S, Bernhardt A, Eagles G, Han X, Hovland M. 2020. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank), South China Sea. Mar Pet Geol, 117: 104349

    Article  Google Scholar 

  • Huang Z, Wu T R, Tan S K, Megawati K, Shaw F, Liu X, Pan T C. 2009. Tsunami hazard from the subduction Megathrust of the South China Sea: Part II. Hydrodynamic modeling and possible impact on Singapore. J Asian Earth Sci, 36: 93–97

    Article  Google Scholar 

  • Hubbard J, Barbot S, Hill E M, Tapponnier P. 2015. Coseismic slip on shallow décollement megathrusts: Implications for seismic and tsunami hazard. Earth-Sci Rev, 141: 45–55

    Article  Google Scholar 

  • Jaffe B, Buckley M, Richmond B, Strotz L, Etienne S, Clark K, Watt S, Gelfenbaum G, Goff J. 2011. Flow speed estimated by inverse modeling of sandy sediment deposited by the 29 September 2009 tsunami near Satitoa, east Upolu, Samoa. Earth-Sci Rev, 107: 23–37

    Article  Google Scholar 

  • Jankaew K, Atwater B F, Sawai Y, Choowong M, Charoentitirat T, Martin M E, Prendergast A. 2008. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature, 455: 1228–1231

    Article  Google Scholar 

  • Kelsey H M, Nelson A R, Hemphill-Haley E, Witter R C. 2005. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. GSA Bull, 117: 1009–1032

    Article  Google Scholar 

  • Kim J, Løvholt F, Issler D, Forsberg C F. 2019. Landslide material control on tsunami genesis—The Storegga Slide and Tsunami (8,100 years BP). J Geophys Res-Oceans, 124: 3607–3627

    Article  Google Scholar 

  • Lane E M, Mountjoy J J, Power W L, Mueller C. 2017. Probabilistic Hazard of Tsunamis Generated by Submarine Landslides in the Cook Strait Canyon (New Zealand). In: Geist E L, Fritz H M, Rabinovich A B, Tanioka Y, eds. Global Tsunami Science: Past and Future, Volume I. Cham: Birkhäuser. 3757–3774

    Google Scholar 

  • Lau A Y A, Switzer A D, Dominey-Howes D, Aitchison J C, Zong Y. 2010. Written records of historical tsunamis in the northeastern South China Sea-challenges associated with developing a new integrated database. Nat Hazards Earth Syst Sci, 10: 1793–1806

    Article  Google Scholar 

  • Lay T. 2018. A review of the rupture characteristics of the 2011 Tohoku-oki Mw9.1 earthquake. Tectonophysics, 733: 4–36

    Article  Google Scholar 

  • Leonard L J, Rogers G C, Mazzotti S. 2014. Tsunami hazard assessment of Canada. Nat Hazards, 70: 237–274

    Article  Google Scholar 

  • Leslie S C, Mann P. 2016. Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea. Earth Planet Sci Lett, 449: 382–394

    Article  Google Scholar 

  • Li H, Yuan Y, Xu Z, Wang Z, Wang J, Wang P, Gao Y, Hou J, Shan D. 2017. The dependency of probabilistic tsunami hazard assessment on magnitude limits of seismic sources in the South China Sea and adjoining basins. Pure Appl Geophys, 174: 2351–2370

    Article  Google Scholar 

  • Li L, Qiu Q, Huang Z. 2012. Numerical modeling of the morphological change in Lhok Nga, west Banda Aceh, during the 2004 Indian Ocean tsunami: Understanding tsunami deposits using a forward modeling method. Nat Hazards, 64: 1549–1574

    Article  Google Scholar 

  • Li L, Huang Z, Qiu Q. 2014. Numerical simulation of erosion and deposition at the Thailand Khao Lak coast during the 2004 Indian Ocean tsunami. Nat Hazards, 74: 2251–2277

    Article  Google Scholar 

  • Li L, Li F, Qiu Q, Li Z, Zhang D, Hui G. 2022. Tsunami simulation of the 1918 Nan’ao earthquake and its implication (in Chinese). Acta Scient Natural Univ Sunyat, 61: 27–38

    Google Scholar 

  • Li L, Shi F, Ma G, Qiu Q. 2019. Tsunamigenic potential of the Baiyun Slide complex in the South China Sea. J Geophys Res-Solid Earth, 124: 7680–7698

    Article  Google Scholar 

  • Li L, Switzer A D, Chan C H, Wang Y, Weiss R, Qiu Q. 2016. How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea. J Geophys Res-Solid Earth, 121: 6250–6272

    Article  Google Scholar 

  • Li L, Switzer A D, Wang Y, Chan C H, Qiu Q, Weiss R. 2018. A modest 0.5-m rise in sea level will double the tsunami hazard in Macau. Sci Adv, 4: eaat1180

    Article  Google Scholar 

  • Li L, Switzer A D, Wang Y, Weiss R, Qiu Q, Chan C H, Tapponnier P. 2015. What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast? Geophys Res Lett, 42: 8498–8506

    Article  Google Scholar 

  • Li W, Alves T M, Wu S, Völker D, Zhao F, Mi L, Kopf A. 2015. Recurrent slope failure and submarine channel incision as key factors controlling reservoir potential in the South China Sea (Qiongdongnan Basin, South Hainan Island). Mar Pet Geol, 64: 17–30

    Article  Google Scholar 

  • Li W, Wu S, Völker D, Zhao F, Mi L, Kopf A. 2014a. Morphology, seismic characterization and sediment dynamics of the Baiyun Slide Complex on the northern South China Sea margin. J Geol Soc, 171: 865–877

    Article  Google Scholar 

  • Li W, Wu S, Wang X, Zhao F, Wang D, Mi L, Li Q. 2014b. Baiyun slide and its relation to fluid migration in the northern slope of Southern China Sea. In: Krastel S, Behrmann J H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz C B, eds. Submarine Mass Movements and Their Consequences: 6th International Symposium. Springer International Publishing. 105–115

  • Li X, Wang D, Wu S, Wang W, Liu G. 2017. Canyon indentification and seafloor geomophology analysis in Sansha (in Chinese). Mar Geol Quat Geol, 37: 28–36

    Google Scholar 

  • Lin A T, Yao B, Hsu S K, Liu C S, Huang C Y. 2009. Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479: 28–42

    Article  Google Scholar 

  • Lin J, Xu M, Zhou Z, Wang Y. 2017. Ocean drilling investigation of the global subduction processes (in Chinese). Adv Earth Sci, 12: 1253–1266

    Google Scholar 

  • Liu H, Zhao X, Wang B, Ren Z. 2015. Numercial modeling of tsunami wave and tsunami warning approach in the South China Sea (in Chinese). Chin Quart Mechan, 36: 351–369

    Google Scholar 

  • Liu P L F, Higuera P, Husrin S, Prasetya G S, Prihantono J, Diastomo H, Pryambodo D G, Susmoro H. 2020. Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides, 17: 2085–2098

    Article  Google Scholar 

  • Liu P L F, Wang X, Salisbury A J. 2009. Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci, 36: 2–12

    Article  Google Scholar 

  • Liu P L F, Woo S B, Cho Y S. 1998. Computer programs for tsunami propagation and inundation. Technical Report. Cornell University

  • Liu Y, Santos A, Wang S M, Shi Y, Liu H, Yuen D A. 2007. Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Phys Earth Planet Inter, 163: 233–244

    Article  Google Scholar 

  • Liu Y. 1981. Fault Structure Analysis Along Southern Coast of China (in Chinese). Beijing: Seismological Press

    Google Scholar 

  • Liu Y. 1985. Active faults along southern coast of China (in Chinese). Mar Geol Quat Geol, 3: 13–23

    Google Scholar 

  • Løvholt F, Bondevik S, Laberg J S, Kim J, Boylan N. 2017. Some giant submarine landslides do not produce large tsunamis. Geophys Res Lett, 44: 8463–8472

    Article  Google Scholar 

  • Løvholt F, Glimsdal S, Harbitz C B. 2020. On the landslide tsunami uncertainty and hazard. Landslides, 17: 2301–2315

    Article  Google Scholar 

  • Løvholt F, Pedersen G, Harbitz C B, Glimsdal S, Kim J. 2015. On the characteristics of landslide tsunamis. Phil Trans R Soc A, 373: 20140376

    Article  Google Scholar 

  • Løvholt F, Schulten I, Mosher D, Harbitz C, Krastel S. 2019. Modelling the 1929 Grand Banks slump and landslide tsunami. Geol Soc Lond Spec Publ, 477: 315–331

    Article  Google Scholar 

  • Lu C H, Yen J Y, Chyi S J, Yu N T, Chen J H. 2019. Geological records of South China Sea tsunamis on Penghu Islands, Taiwan. J Asian Earth Sci, 177: 263–274

    Article  Google Scholar 

  • Ma G, Shi F, Kirby J T. 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model, 43–44: 22–35

    Article  Google Scholar 

  • Mallet R. 1854. Third report of the facts of earthquake phenomena. Catalogue of recorded earthquakes from 1606B.C. to A.D.1850 (1755–1784). Reports of the British Association Meetings, 22: 1–176 (1852)

    Google Scholar 

  • Maselli V, Oppo D, Moore A L, Gusman A R, Mtelela C, Iacopini D, Taviani M, Mjema E, Mulaya E, Che M, Tomioka A L, Mshiu E, Ortiz J D. 2020. A 1000-yr-old tsunami in the Indian Ocean points to greater risk for East Africa. Geology, 48: 808–813

    Article  Google Scholar 

  • McCaffrey R. 2008. Global frequency of magnitude 9 earthquakes. Geology, 36: 263–266

    Article  Google Scholar 

  • McSaveney M J, Goff J R, Darby D J, Goldsmith P, Barnett A, Elliott S, Nongkas M. 2000. The 17 July 1998 tsunami, Papua New Guinea: Evidence and initial interpretation. Mar Geol, 170: 81–92

    Article  Google Scholar 

  • Megawati K, Shaw F, Sieh K, Huang Z, Wu T R, Lin Y, Tan S K, Pan T C. 2009. Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami. J Asian Earth Sci, 36: 13–20

    Article  Google Scholar 

  • Meltzner A J, Sieh K, Chiang H W, Shen C C, Suwargadi B W, Natawidjaja D H, Philibosian B, Briggs R W. 2012. Persistent termini of 2004- and 2005-like ruptures of the Sunda megathrust. J Geophys Res, 117: B04405

    Google Scholar 

  • Meltzner A J, Sieh K, Chiang H W, Shen C C, Suwargadi B W, Natawidjaja D H, Philibosian B E, Briggs R W, Galetzka J. 2010. Coral evidence for earthquake recurrence and an A.D. 1390–1455 cluster at the south end of the 2004 Aceh-Andaman rupture. J Geophys Res-Solid Earth, 115: B10402

    Article  Google Scholar 

  • Moore G F, Bangs N L, Taira A, Kuramoto S, Pangborn E, Tobin H J. 2007. Three-dimensional splay fault geometry and implications for tsunami generation. Science, 318: 1128–1131

    Article  Google Scholar 

  • Mori N, Goda K, Cox D. 2018. Recent process in Probabilistic Tsunami Hazard Analysis (PTHA) for mega thrust subduction earthquakes. Adv Nat Technol Hazards Res, 47: 469–485

    Article  Google Scholar 

  • Mueller C, Mountjoy J, Power W, Lane E, Wang X. 2016. Towards a spatial probabilistic submarine landslide hazard model for submarine canyons. In: Lamarche G, Mountjoy J, Bull S, Hubble T, Krastel S, Lane E, Micallef A, Moscardelli L, Mueller C, Pecher I, Woelz S, eds. Submarine Mass Movements and their Consequences: 7th International Symposium. Springer International Publishing. 589–597

  • Mueller C, Power W, Fraser S, Wang X. 2015. Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example. J Geophys Res-Solid Earth, 120: 488–502

    Article  Google Scholar 

  • Murphy S, Scala A, Herrero A, Lorito S, Festa G, Trasatti E, Tonini R, Romano F, Molinari I, Nielsen S. 2016. Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of megathrust earthquakes. Sci Rep, 6: 35007

    Article  Google Scholar 

  • Nakanishi R, Okamura S, Yokoyama Y, Miyairi Y, Sagayama T, Ashi J. 2020. Holocene tsunami, storm, and relative sea level records obtained from the southern Hidaka coast, Hokkaido, Japan. Quat Sci Rev, 250: 106678

    Article  Google Scholar 

  • Nanayama F, Furukawa R, Shigeno K, Makino A, Soeda Y, Igarashi Y. 2007. Nine unusually large tsunami deposits from the past 4000 years at Kiritappu marsh along the southern Kuril Trench. Sediment Geol, 200: 275–294

    Article  Google Scholar 

  • Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater B F, Shigeno K, Yamaki S. 2003. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature, 424: 660–663

    Article  Google Scholar 

  • Nanto D, Cooper W, Donnelly M, Johnson R. 2011. Japan’s 2011 earthquake and tsunami: Economic effects and implications for the United States. DIANE Publishing

  • Nguyen P H, Bui Q C, Vu P H, Pham T T. 2014. Scenario-based tsunami hazard assessment for the coast of Vietnam from the Manila Trench source. Phys Earth Planet Inter, 236: 95–108

    Article  Google Scholar 

  • Obana K, Kodaira S. 2009. Low-frequency tremors associated with reverse faults in a shallow accretionary prism. Earth Planet Sci Lett, 287: 168–174

    Article  Google Scholar 

  • Okal E A, Synolakis C E, Kalligeris N. 2011. Tsunami simulations for regional sources in the South China and adjoining seas. Pure Appl Geophys, 168: 1153–1173

    Article  Google Scholar 

  • Pampell-Manis A, Horrillo J, Shigihara Y, Parambath L. 2016. Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico. J Geophys Res-Oceans, 121: 1009–1027

    Article  Google Scholar 

  • Paris R, Fournier J, Poizot E, Etienne S, Morin J, Lavigne F, Wassmer P. 2010. Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): A coupled offshore-onshore model. Mar Geol, 268: 43–54

    Article  Google Scholar 

  • Paris R, Switzer A D, Belousova M, Belousov A, Ontowirjo B, Whelley P L, Ulvrova M. 2014. Volcanic tsunami: A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea). Nat Hazards, 70: 447–470

    Article  Google Scholar 

  • Park H, Cox D T. 2016. Probabilistic assessment of near-field tsunami hazards: Inundation depth, velocity, momentum flux, arrival time, and duration applied to Seaside, Oregon. Coast Eng, 117: 79–96

    Article  Google Scholar 

  • Peng C, Li Y, Wu M. 2017. Analysis of seismogenic structure mechanism of the Nan’ao earthquake in 1918 (in Chinese). South China J Seismol, 37: 1–14

    Google Scholar 

  • Perrey A. 1862. Documents sur les tremblements de terre et les phenomenos volcaniques au Japon (in French)

  • Philibosian B, Meltzner A J. 2020. Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide. Quat Sci Rev, 241: 106390

    Article  Google Scholar 

  • Pope E L, Talling P J, Urlaub M, Hunt J E, Clare M A, Challenor P. 2015. Are large submarine landslides temporally random or do uncertainties in available age constraints make it impossible to tell? Mar Geol, 369: 19–33

    Article  Google Scholar 

  • Power W, Horspool N, Wang X, Mueller C. 2015. Probabilistic mapping of tsunami hazard and risk for gisborne city and wainui beach. GNS Sci Consultancy Report, 219: 79

    Google Scholar 

  • Qiu Q, Li L, Hsu Y J, Wang Y, Chan C H, Switzer A D. 2019. Revised earthquake sources along Manila trench for tsunami hazard assessment in the South China Sea. Nat Hazards Earth Syst Sci, 19: 1565–1583

    Article  Google Scholar 

  • Qiu Z, Han X, Wang Y, Tao C. 2009. Research progress in tsunami warning and Quaternary paleo-tsunami sedimentary records (in Chinese). J Mar Sci, 27: 67–73

    Google Scholar 

  • Ramos N T, Maxwell K V, Tsutsumi H, Chou Y C, Duan F, Shen C C, Satake K. 2017. Occurrence of 1 ka-old corals on an uplifted reef terrace in west Luzon, Philippines: Implications for a prehistoric extreme wave event in the South China Sea region. Geosci Lett, 4: 12

    Article  Google Scholar 

  • Ren J, Sun M, Han B. 2021. A giant submarine landslide and its triggering mechanisms on the Nansha trough margin, south China Sea (in Chinese). Earth Sci, 46: 1058–1071

    Google Scholar 

  • Ren L, Huo Z, Hong M. 2014. Principle and method of the seismic tsunami hazard analysis coupling uncertainty effect of potential source parameters (in Chinese). Mar Forec, 31: 7–13

    Google Scholar 

  • Ren Y, Wen R, Song Y. 2014. Recent progress of tsunami hazard mitigation in China. Episodes, 37: 277–283

    Article  Google Scholar 

  • Ren Y, Wen R, Zhang P, Yang Z, Pan R, Li X. 2016. Implications of local sources to probabilistic tsunami hazard analysis in South Chinese coastal area. J Earthquake Tsunami, 11: 1740001

    Article  Google Scholar 

  • Ren Y, Zhao M, Zhang J, Lv Z, Pang X, Qiu X. 2020. Constraint on the shape of the Manila subduction slab from earthquake relocation using long-term ocean bottom seismometer data (in Chinese). Chin J Geophys, 63: 1927–1937

    Google Scholar 

  • Ren Z Y, Zhao X, Liu H. 2015. Dispersion effects on tsunami propagation in south China sea. J Earthquake Tsunami, 9: 1540001

    Article  Google Scholar 

  • Ren Z, Zhao X, Liu H. 2019. Numerical study of the landslide tsunami in the South China Sea using Herschel-Bulkley rheological theory. Phys Fluids, 31: 056601

    Article  Google Scholar 

  • Ren Z, Zhao X, Liu H. 2018. Numerical study of submarine landslide tsunami based on rheological theory (in Chinese). Chin Quart Mechan, 39: 451–464

    Google Scholar 

  • Richmond B, Szczuciński W, Chagué-Goff C, Goto K, Sugawara D, Witter R, Tappin D R, Jaffe B, Fujino S, Nishimura Y, Goff J. 2012. Erosion, deposition and landscape change on the Sendai coastal plain, Japan, resulting from the March 11, 2011 Tohoku-oki tsunami. Sediment Geol, 282: 27–39

    Article  Google Scholar 

  • Rubin C M, Horton B P, Sieh K, Pilarczyk J E, Daly P, Ismail N, Parnell A C. 2017. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami. Nature Communications 2017 8:1, 8: 1–12

    Google Scholar 

  • Saito T, Inazu D, Tanaka S, Miyoshi T. 2013. Tsunami coda across the Pacific Ocean following the 2011 Tohoku-Oki earthquake. Bull Seismol Soc Am, 103: 1429–1443

    Article  Google Scholar 

  • Satake K, Atwater B F. 2007. Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Annu Rev Earth Planet Sci, 35: 349–374

    Article  Google Scholar 

  • Satake K, Nanayama F, Yamaki S, Tanioka Y, Hirata K. 2005. Variability Among Tsunami Sources in the 17th-21st Centuries Along the Soutehrn Kuril Trench. In Kenji Satake (Ed.), Tsunamis (Vol. 23, pp. 157–170). Springer Netherlands

  • Satake K, Wang K, Atwater B F. 2003. Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J Geophys Res, 108: 2535

    Article  Google Scholar 

  • Satake K, Shimazaki K. 1988. Free oscillation of the Japan Sea excited by earthquakes—I. Observation and wave-theoretical approach. Geophys J Int, 93: 451–456

    Article  Google Scholar 

  • Schambach L, Grilli S T, Kirby J T, Shi F. 2018. Landslide tsunami hazard along the upper US east coast: Effects of slide deformation, bottom friction, and frequency dispersion. Pure Appl Geophys, 176: 3059–3098

    Article  Google Scholar 

  • Schambach L, Grilli S T, Tappin D R. 2021. New high-resolution modeling of the 2018 Palu tsunami, based on supershear earthquake mechanisms and mapped coastal landslides, supports a dual source. Front Earth Sci, 627

    Google Scholar 

  • Schellart W P, Rawlinson N. 2013. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones. Phys Earth Planet Inter, 225: 41–67

    Article  Google Scholar 

  • Sepúlveda I, Haase J S, Liu P L E, Grigoriu M, Winckler P. 2021. Nonstationary probabilistic tsunami hazard assessments incorporating climate-change-driven sea level rise. Earths Future, 9: e02007

    Article  Google Scholar 

  • Sepúlveda I, Liu P L E, Grigoriu M. 2019. Probabilistic tsunami hazard assessment in South China Sea with consideration of uncertain earthquake characteristics. J Geophys Res-Solid Earth, 124: 658–688

    Article  Google Scholar 

  • Shelley K, Segall P. 2000. A mechanical model for intraplate earthquakes: Application to the New Madrid seismic zone. Science, 289: 2329–2332

    Article  Google Scholar 

  • Shen J, Liu H. 2018. Relationship between wave face angle and force investigation when tsunami interacts with vertical wall (in Chinese). CSTAM-2018-D036. Hangzhou, China

  • Shi F, Kirby J T, Harris J C, Geiman J D, Grilli S T. 2012. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model, 43–44: 36–51

    Article  Google Scholar 

  • Shi H, Si P, Dong P, Yu X. 2019. A two-phase SPH model for massive sediment motion in free surface flows. Adv Water Resources, 129: 80–98

    Article  Google Scholar 

  • Si P, Shi H, Yu X. 2018. A general numerical model for surface waves generated by granular material intruding into a water body. Coast Eng, 142: 42–51

    Article  Google Scholar 

  • Sieh K, Natawidjaja D H, Meltzner A J, Shen C C, Cheng H, Li K S, Suwargadi B W, Galetzka J, Philibosian B, Edwards R L. 2008. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science, 322: 1674–1678

    Article  Google Scholar 

  • Sørensen M B, Spada M, Babeyko A, Wiemer S, Grünthal G. 2012. Probabilistic tsunami hazard in the Mediterranean Sea. J Geophys Res-Solid Earth, 117: B01305

    Article  Google Scholar 

  • Spiske M, Weiss R, Bahlburg H, Roskosch J, Amijaya H. 2010. The TsuSedMod inversion model applied to the deposits of the 2004 Sumatra and 2006 Java tsunami and implications for estimating flow parameters of palaeo-tsunami. Sediment Geol, 224: 29–37

    Article  Google Scholar 

  • Srisutam C, Wagner J F. 2010. Reconstructing tsunami run-up from the characteristics of tsunami deposits on the Thai Andaman Coast. Coast Eng, 57: 493–499

    Article  Google Scholar 

  • Su C C, Tseng J Y, Hsu H H, Chiang C S, Yu H S, Lin S, Liu J T. 2012. Records of submarine natural hazards off SW Taiwan. Geol Soc Lond Spec Publ, 361: 41–60

    Article  Google Scholar 

  • Sugawara D, Goto K. 2012. Numerical modeling of the 2011 Tohoku-oki tsunami in the offshore and onshore of Sendai Plain, Japan. Sediment Geol, 282: 110–123

    Article  Google Scholar 

  • Sun J, Xu H, Zhan W, Cao J. 2012. Activity and triggering mechanism of seismic belt along the northern South China Sea continental margin (in Chinese). J Trop Oceanogr, 31: 40–47

    Google Scholar 

  • Sun L, Zhou X, Huang W, Liu X, Yan H, Xie Z, Wu Z, Zhao S, Da Shao S, Yang W. 2013. Preliminary evidence for a 1000-year-old tsunami in the South China Sea. Sci Rep, 3: 1655

    Article  Google Scholar 

  • Sun Q, Alves T M, Lu X, Chen C, Xie X. 2018a. True volumes of slope failure estimated from a Quaternary mass-transport deposit in the Northern South China Sea. Geophys Res Lett, 45: 2642–2651

    Article  Google Scholar 

  • Sun Q, Cartwright J, Xie X, Lu X, Yuan S, Chen C. 2018b. Reconstruction of repeated Quaternary slope failures in the northern South China Sea. Mar Geol, 401: 17–35

    Article  Google Scholar 

  • Sun Q, Leslie S. 2020. Tsunamigenic potential of an incipient submarine slope failure in the northern South China Sea. Mar Pet Geol, 112: 104111

    Article  Google Scholar 

  • Sun Q, Xie X, Piper D J W, Wu J, Wu S. 2017. Three dimensional seismic anatomy of multi-stage mass transport deposits in the Pearl River Mouth Basin, northern South China Sea: Their ages and kinematics. Mar Geol, 393: 93–108

    Article  Google Scholar 

  • Sun Y, Huang B. 2014. A potential tsunami impact assessment of submarine landslide at Baiyun Depression in Northern South China Sea. GEOENVIRON DISASTERS, 1: 7

    Article  Google Scholar 

  • Synolakis C E, Bardet J P, Borrero J C, Davies H L, Okal E A, Silver E A, Sweet S, Tappin D R. 2002. The slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc Lond A, 458: 763–789

    Article  Google Scholar 

  • Tan W K, Teh S Y, Koh H L. 2017. Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure. Environ Sci Pollut Res, 24: 15976–15994

    Article  Google Scholar 

  • Tappin D R, Watts P, McMurtry G M, Lafoy Y, Matsumoto T. 2001. The Sissano, Papua New Guinea tsunami of July 1998—Offshore evidence on the source mechanism. Mar Geol, 175: 1–23

    Article  Google Scholar 

  • Taylor F W, Briggs R W, Frohlich C, Brown A, Hornbach M, Papabatu A K, Meltzner A J, Billy D. 2008. Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake. Nat Geosci, 1: 253–257

    Article  Google Scholar 

  • ten Brink U S, Barkan R, Andrews B D, Chaytor J D. 2009. Size distributions and failure initiation of submarine and subaerial landslides. Earth Planet Sci Lett, 287: 31–42

    Article  Google Scholar 

  • ten Brink U S, Chaytor J D, Geist E L, Brothers D S, Andrews B D. 2014. Assessment of tsunami hazard to the U.S. Atlantic margin. Mar Geol, 353: 31–54

    Article  Google Scholar 

  • ten Brink U S, Geist E L, Andrews B D. 2006. Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett, 33: 2006GL026125

    Article  Google Scholar 

  • Terry J P, Winspear N, Goff J, Tan P H H. 2017. Past and potential tsunami sources in the South China Sea: A brief synthesis. Earth-Sci Rev, 167: 47–61

    Article  Google Scholar 

  • Thio H K, Somerville P, Ichinose G. 2007. Probabilistic analysis of strong ground motion and tsunami hazards in southeast Asia. J Earthquake Tsunami, 01: 119–137

    Article  Google Scholar 

  • Titov V, Rabinovich A B, Mofjeld H O, Thomson R E, Gonzalez F I. 2005. The global reach of the 26 December 2004 Sumatra tsunami. Science, 309: 2045–2048

    Article  Google Scholar 

  • Urgeles R, Camerlenghi A. 2013. Submarine landslides of the Mediterranean Sea: Trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophys Res-Earth Surf, 118: 2600–2618

    Article  Google Scholar 

  • Urlaub M, Talling P J, Masson D G. 2013. Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quat Sci Rev, 72: 63–82

    Article  Google Scholar 

  • Volpe M, Lorito S, Selva J, Tonini R, Romano F, Brizuela B. 2019. From regional to local SPTHA: Efficient computation of probabilistic tsunami inundation maps addressing near-field sources. Nat Hazards Earth Syst Sci, 19: 455–469

    Article  Google Scholar 

  • Vu T C, Nguyen D X. 2008. Tsunami risk along Vietnamese coast. J Water Resour Environ Eng, 23: 24–33

    Google Scholar 

  • Wallace L M, Webb S C, Ito Y, Mochizuki K, Hino R, Henrys S, Schwartz S Y, Sheehan A F. 2016. Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352: 701–704

    Article  Google Scholar 

  • Wang D, Wu S, Qin Z, Spence G, Lü F. 2013. Seismic characteristics of the Huaguang mass transport deposits in the Qiongdongnan Basin, South China Sea: Implications for regional tectonic activity. Mar Geol, 346: 165–182

    Article  Google Scholar 

  • Wang K, Bilek S L. 2014. Invited review paper: Fault creep caused by subduction of rough seafloor relief. Tectonophysics, 610: 1–24

    Article  Google Scholar 

  • Wang P, Shan D, Wang G, Yu F, Hou J, Zhao L, Yuan Y, Fang T, Ren Z, Wang Z. 2016. Modelling and assessment of tsunami-induced vortex flows hazards from the 2011 MW9.0 Tohoku-oki earthquake in harbors and adjacent area (in Chinese). Chin J Geophys, 59: 4162–4177

    Google Scholar 

  • Wang W, Wang D, Wu S, Völker D, Zeng H, Cai G, Li Q. 2018. Submarine landslides on the north continental slope of the South China Sea. J Ocean Univ China, 17: 83–100

    Article  Google Scholar 

  • Wang X, Power W. 2011. COMCOT: A tsunami generation, propagation and run-up model. GNS Science

  • Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am, 84: 974–1002

    Google Scholar 

  • Wen R, Ren Y, Li X, Pan R. 2011. Probabilistic earthquake tsunami hazard assessement approach (in Chinese). South China J Seismol, 31: 1–13

    Google Scholar 

  • Williams R, Rowley P, Garthwaite M C. 2019. Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami. Geology, 47: 973–976

    Article  Google Scholar 

  • Wu S G, Qin Z L, Wang D W, Peng X C, Wang Z J, Yao G S. 2011. Analysis on seismic characteristics and triggering mechanisms of mass transport deposits on the Northern slope of the South China Sea. Chin J Geophys, 54: 1056–1068

    Article  Google Scholar 

  • Wu S, Sun Y, Li Q, Wang J, Wang D, Sun Q, Chen C, Xie Y. 2019. Deepwaer Geohazards in the South China Sea (in Chinese). Beijing: Science Press

    Google Scholar 

  • Wu S, Wang D, Völker D. 2018. Deep-sea geohazards in the South China Sea. J Ocean Univ China, 17: 1–7

    Article  Google Scholar 

  • Wu T R, Huang H C. 2009. Modeling tsunami hazards from Manila trench to Taiwan. J Asian Earth Sci, 36: 21–28

    Article  Google Scholar 

  • Xia S, Qiu X, Tong C H, Xu H, Zhao M. 2012. Three-dimensional tomographic model of the crust beneath the Hong Kong region. Geology, 40: 59–62

    Article  Google Scholar 

  • Xia S, Zhou P, Zhao D, Cao J. 2020. Seismogenic structure in the source zone of the 1918 M7.5 NanAo earthquake in the northern South China Sea. Phys Earth Planet Inter, 302: 106472

    Article  Google Scholar 

  • Xie X, Chen C, Li L, Wu S, Yuen D A, Wang D. 2019. Tsunami hazard assessment for atoll islands inside the South China Sea: A case study of the Xisha Archipelago. Phys Earth Planet Inter, 290: 20–35

    Article  Google Scholar 

  • Xie Y, Cai M. 1983. Compilation of Historical Earthquakes of China (in Chinese). Beijing: Science Press

    Google Scholar 

  • Xiong C, Cao J, Sun J, Xia S, Wan K, Fan C, Yang B. 2018. Varition characteristics along the strike of the Littoral Fault Zone in offshore Pearl River Estuary (in Chinese). Earth Sci, 43: 352–367

    Google Scholar 

  • Xu H, Qiu X, Zhao M, Sun J, Zhu J. 2006. The charateristics of crustal structure and seismogenic zone of the NanAo earthquake (M=7.5) in the northeastern South China Sea (in Chinese). Chin Sci Bull, B11: 83–91

    Google Scholar 

  • Xu H, Ye C, Qiu X, Sun J, Xia S. 2010. Deep geophysical survery and investigation of the seismogenic structure of the Littoral Fault Zone in the nothern South China Sea (in Chinese). South China J Seismol, 30: 10–18

    Google Scholar 

  • Xu Q. 2007. Land sinking into the sea and possible tsunami triggered by the 1605 Qiongzhou earthuake (in Chinese). Acta Oceanol Sin, 29: 146–156

    Google Scholar 

  • Yang J, Li L, Zhao K, Wang P, Wang D, Sou I M, Yang Z, Hu J, Tang X, Mok K M, Liu P L F. 2019. A comparative study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—Their Impacts on coastal inundation in Macau. J Geophys Res-Oceans, 124: 9590–9619

    Article  Google Scholar 

  • Yang W, Sun L, Yang Z, Gao S, Gao Y, Shao D, Mei Y, Zang J, Wang Y, Xie Z. 2019. Nan’ao, an archaeological site of Song dynasty destroyed by tsunami (in Chinese). Chin Sci Bull, 64: 107–120

    Article  Google Scholar 

  • Yang W, Xiew Z, Sun L. 2021. Research progress in the reconstruction of paleotsunami in the South China Sea and the tsunami deposit characteristics (in Chinese). Earth Sci Front, 28: 246–257

    Google Scholar 

  • Yang X, Peel F J, McNeill L C, Sanderson D J. 2020. Comparison of fold-thrust belts driven by plate convergence and gravitational failure. Earth-Sci Rev, 203: 103136

    Article  Google Scholar 

  • Yang X. 2003. Summarization of genesis of low-velocity layer in contiental crust (in Chinese). Geol Sci Tech Inform, 22: 35–41

    Google Scholar 

  • Yao B. 1993. Cenozoic tectonics of the continental margins in northern South China Sea (in Chinese). GeolStudy South China Sea, 5: 1–12

    Google Scholar 

  • Yavari-Ramshe S, Ataie-Ashtiani B. 2018. On the effects of landslide deformability and initial submergence on landslide-generated waves. Landslides 2018 16:1, 16: 37–53

    Google Scholar 

  • Ye L, Kanamori H, Rivera L, Lay T, Zhou Y, Sianipar D, Satake K. 2020. The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption. Sci Adv, 6: eaaz1377

    Article  Google Scholar 

  • Yokota Y, Ishikawa T, Watanabe S I, Tashiro T, Asada A. 2016. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534: 374–377

    Article  Google Scholar 

  • Yu F, Dong J, Xu F. 2016. Offshore Oceanography in China: Marine Hazards (in Chinese). Beijing: China Ocean Press

    Google Scholar 

  • Yu F, Yuan Y, Wang P, Xu Z, Zhao L, Hou J, Wang J, Li H, Fan T, Gao Y, Ren Z, Sun L, Wang Z, Shi J. 2020. Modern Technologies in Earthquake-Generated Tsunami Early Warning (in Chinese). Beijing: Science Press

    Google Scholar 

  • Yu S B, Kuo L C, Punongbayan R S, Ramos E G. 1999. GPS observation of crustal deformation in the Taiwan-Luzon Region. Geophys Res Lett, 26: 923–926

    Article  Google Scholar 

  • Yuan Y, Li H, Wei Y, Shi F, Wang Z, Hou J, Wang P, Xu Z. 2021. Probabilistic tsunami hazard assessment (PTHA) for southeast coast of Chinese Mainland and Taiwan Island. J Geophys Res-Solid Earth, 126: e20344

    Article  Google Scholar 

  • Yue H, Zhang Y, Ge Z, Wang T, Zhao L. 2020. Resolving rupture processes of great earthquakes: Reviews and perspective from fast response to joint inversion. Sci China Earth Sci, 63: 492–511

    Article  Google Scholar 

  • Zengaffinen T, Løvholt F, Pedersen G K, Harbitz C B. 2020. Effects of rotational submarine slump dynamics on tsunami genesis: New insight from idealized models and the 1929 Grand Banks event. Geol Soc Lond Spec Publ, 500: 41–61

    Article  Google Scholar 

  • Zhang C, Kirby J T, Shi F, Ma G, Grilli S T. 2021a. A two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 1. Theoretical basis. Ocean Model, 159: 101749

    Article  Google Scholar 

  • Zhang C, Kirby J T, Shi F, Ma G, Grilli S T. 2021b. A two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 2. Numerical discretization and model validation. Ocean Model, 160: 101769

    Article  Google Scholar 

  • Zhao M, Qiu X, Xia K, Ye C. 2003. Research progress and future prospects of the Littoral Fault Zone in the notheastern South China Sea (in Chinese). South China J Seismol, 23: 20–27

    Google Scholar 

  • Zhao M, Qiu X, Ye C, Xia K, Huang C, Xie J, Wang P. 2004. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (Littoral) Fault Zone in northeastern South China Sea (in Chinese). Chin J Geophys, 47: 845–852

    Article  Google Scholar 

  • Zhong J. 1987. Investigation of the location and activiation of the Littoral Fault Zone (in Chinese). South China J Seismol, 7: 4–10

    Google Scholar 

  • Zhou Q, Li X, Zhou H, Liu L, Xu Y, Gao S, Ma L. 2018. Characteristics and genetic analysis of submarine landslides in the northern slope of the South China Sea. Mar Geophys Res, 40: 303–314

    Article  Google Scholar 

  • Zhu J, Li S, Sun Z, Li X, Li J. 2017. Crustal architecture and subduction processes along the Manila Trench (in Chinese). Earth Sci Front, 24: 341–351

    Google Scholar 

  • Zhu J, Sun Z, Kopp H, Qiu X, Xu H, Li S, Zhan W. 2013. Segmentation of the Manila subduction system from migrated multichannel seismics and wedge taper analysis. Mar Geophys Res, 34: 379–391

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Province Introduced Innovative R&D Team of Geological Processes and Natural Disasters around the South China Sea (Grant No. 2016ZT06N331), the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. 311021002), the Key Research and Development Program of Hainan Province (Grant No. ZDYF2020209), the National Natural Science Foundation of China (Grant Nos. 41976197, 42076059, 41774049, 41772209) and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 2021qntd23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Qiu, Q., Li, Z. et al. Tsunami hazard assessment in the South China Sea: A review of recent progress and research gaps. Sci. China Earth Sci. 65, 783–809 (2022). https://doi.org/10.1007/s11430-021-9893-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9893-8

Keywords

Navigation