Skip to main content
Log in

The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Ice avalanches are one of the most devastating mountain hazards, and can pose a great risk to the security of the surrounding area. Although ice avalanches have been widely observed in mountainous regions around the world, only a few ice avalanche events have been studied comprehensively, due to the lack of available data. In this study, in response to the recent catastrophic rock-ice avalanche (7 February 2021) at Chamoli in the India Himalaya, we used high-resolution satellite images and found that this event was actually a glacier-rock landslide, where the collapse of the rock-ice body was caused by the sliding of the bedrock beneath the glacier, for which the source area and volume loss were about 2.89×105 m2 and 2.46×107 m3, respectively, corresponding to an average elevation change of about -85 m. Furthermore, visual analysis of the dense time-series satellite images shows that the overall downward sliding of the collapsed rock-ice body initiated around the summer of 2017, and thereafter exhibited clear seasonality (mainly in summer). Meteorological analysis reveals a strong rainfall anomaly in the initiation period of the sliding and a remarkable winter warming anomaly in the 40 days before the collapse. Comparisons of multi-temporal digital elevation models (DEMs) further suggest that the glacier geometry in the collapsed areas was likely changing (i.e., accelerated surface thinning in the lower part of the glaciers and insignificant change in the upper part), which is consistent with the region-wide climate warming. Finally, by combining the above findings and a geomorphic analysis, we conclude that the rock-ice avalanche event was mainly caused by the joint effects of climate and weather changes acting on a steeply sloping and fracture-prone geological condition. The findings of this study provide new and valuable evidence for the study of slope/glacier instability at high altitudes. This study also highlights that, for the Himalaya and other high mountain ranges, there is an urgent need to identify the glaciers that have a high risk of ice avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azam M F, Srivastava S. 2020. Mass balance and runoff modelling of partially debris-covered Dokriani Glacier in monsoon-dominated Himalaya using ERA5 data since 1979. J Hydrol, 590: 125432

    Article  Google Scholar 

  • Berthier E, Vincent C, Magnússon E, Gunnlaugsson Á P, Pitte P, Le Meur E, Masiokas M, Ruiz L, Pálsson F, Belart J M C, Wagnon P. 2014. Glacier topography and elevation changes derived from Pléiades submeter stereo images. Cryosphere, 8: 2275–2291

    Article  Google Scholar 

  • Braathen A, Blikra L H, Berg S S, Karlsen F. 2004. Rock-slope failures in Norway: Type, geometry, deformation mechanisms and stability. Norw J Geol, 84: 67–88

    Google Scholar 

  • Brun F, Berthier E, Wagnon P, Kääb A, Treichler D. 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat Geosci, 10: 668–673

    Article  Google Scholar 

  • Cao B, Gruber S, Zheng D, Li X. 2020. The ERA5-Land soil temperature bias in permafrost regions. Cryosphere, 14: 2581–2595

    Article  Google Scholar 

  • Chen Y, Sharma S, Zhou X, Yang K, Li X, Niu X, Hu X, Khadka N. 2021. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmos Res, 250: 105365

    Article  Google Scholar 

  • COSI-CORR User’s Guide. 2017. Co-registration of Optically Sensed Images and Correlation. Califonia Institute of Technology, USA, http://www.tectonics.caltech.edu/slip_history/spot_coseis/index.html

    Google Scholar 

  • Dai C, Higman B, Lynett P J, Jacquemart M, Howat I M, Liljedahl A K, Dufresne A, Freymueller J T, Geertsema M, Ward Jones M, Haeussler P J. 2020. Detection and assessment of a large and potentially tsunamigenic periglacial landslide in Barry Arm, Alaska. Geophys Res Lett, 47: e89800

    Article  Google Scholar 

  • Deline P, Gruber S, Amann F, Bodin X, Delaloye R, Failletaz J, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, McColl S, Ravanel L, Schoeneich P, Weber S. 2021. Ice loss from glaciers and permafrost and related slope instability in highmountain regions. In: Snow and Ice-Related Hazards, Risks, and Disasters. Amsterdam: Elsevier. 501–540

    Chapter  Google Scholar 

  • Ding C, Zhang L, Liao M, Feng G, Dong J, Ao M, Yu Y. 2020. Quantifying the spatio-temporal patterns of dune migration near Minqin Oasis in northwestern China with time series of Landsat-8 and Sentinel-2 observations. Remote Sens Environ, 236: 111498

    Article  Google Scholar 

  • Du Y N, Xu Q, Zhang L, Feng G C, Li Z W, Chen R F, Lin C W. 2017. Recent landslide movement in Tsaoling, Taiwan tracked by TerraSARX/ TanDEM-X DEM time series. Remote Sens, 9: 353

    Article  Google Scholar 

  • Faillettaz J, Sornette D, Funk M. 2011. Numerical modeling of a gravitydriven instability of a cold hanging glacier: Reanalysis of the 1895 break-off of Altelsgletscher, Switzerland. J Glaciol, 57: 817–831

    Article  Google Scholar 

  • Faillettaz J, Funk M, Vincent C. 2015. Avalanching glacier instabilities: Review on processes and early warning perspectives. Rev Geophys, 53: 203–224

    Article  Google Scholar 

  • Falaschi D, Kääb A, Paul F, Tadono T, Rivera J A, Lenzano L E. 2019. Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina. Cryosphere, 13: 997–1004

    Article  Google Scholar 

  • Fischer L, Huggel C, Kääb A, Haeberli W. 2013. Slope failures and erosion rates on a glacierized high-mountain face under climatic changes. Earth Surf Proc Land, 38: 836–846

    Article  Google Scholar 

  • Gilbert A, Leinss S, Kargel J, Kääb A, Gascoin S, Leonard G, Berthier E, Karki A, Yao T. 2018. Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet. Cryosphere, 12: 2883–2900

    Article  Google Scholar 

  • Gruber S. 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere, 6: 221–233

    Article  Google Scholar 

  • Gruber S, Fleiner R, Guegan E, Panday P, Schmid M O, Stumm D, Wester P, Zhang Y, Zhao L. 2017. Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere, 11: 81–99

    Article  Google Scholar 

  • Gruber S, Haeberli W. 2007. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res, 112: F02S18

    Google Scholar 

  • Hock R, G Rasul, C Adler, B Cáceres, S Gruber, Y Hirabayashi, M Jackson, A Kääb, S Kang, S Kutuzov, A Milner, U Molau, S Morin, B Orlove, H Steltzer. 2019. High mountain areas. In: Pörtner H O, Roberts D C, Delmotte V M, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer N M, eds. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. In press, https://www.ipcc.ch/srocc/chapter/chapter-2/

  • Huggel C, Zgraggen-Oswald S, Haeberli W, Kääb A, Polkvoj A, Galushkin I, Evans S G. 2005. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: Assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazards Earth Syst Sci, 5: 173–187

    Article  Google Scholar 

  • Jacquemart M, Loso M, Leopold M, Welty E, Berthier E, Hansen J S S, Sykes J, Tiampo K. 2020. What drives large-scale glacier detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska. Geology, 48: 703–707

    Article  Google Scholar 

  • Kargel J S, Leonard G J, Shugar D H, Haritashya U K, Bevington A, Fielding E J, Fujita K, Geertsema M, Miles E S, Steiner J, Anderson E, Bajracharya S, Bawden G W, Breashears D F, Byers A, Collins B, Dhital M R, Donnellan A, Evans T L, Geai M L, Glasscoe M T, Green D, Gurung D R, Heijenk R, Hilborn A, Hudnut K, Huyck C, Immerzeel W W, Jiang L M, Jibson R, Kääb A, Khanal N R, Kirschbaum D, Kraaijenbrink P D A, Lamsal D, Liu S Y, Lv M Y, McKinney D, Nahirnick N K, Nan Z T, Ojha S, Olsenholler J, Painter T H, Pleasants M, Pratima K C, Yuan Q I, Raup B H, Regmi D, Rounce D R, Sakai A, Shangguan D H, Shea J M, Shrestha A B, Shukla A, Stumm D, van K M, Voss K, Wang X, Weihs B, Wolfe D, Wu L Z, Yao X J, Yoder M R, Young N. 2016. Geomorphic and geologic controls of geohazards induced by Nepals 2015 Gorkha earthquake. Science, 351: aac8353

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y. 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488: 495–498

    Article  Google Scholar 

  • Kääb A, Leinss S, Gilbert A, Bühler Y, Gascoin S, Evans S G, Bartelt P, Berthier E, Brun F, Chao W A, Farinotti D, Gimbert F, Guo W, Huggel C, Kargel J S, Leonard G J, Tian L, Treichler D, Yao T. 2018. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat Geosci, 11: 114–120

    Article  Google Scholar 

  • Kääb A, Jacquemart M, Gilbert A, Leinss S, Girod L, Huggel C, Falaschi D, Ugalde F, Petrakov D, Chernomorets S, Dokukin M, Paul F, Gascoin S, Berthier E, Kargel, J S. 2021. Sudden large-volume detachments of low-angle mountain glaciers-more frequent than thought? Cryosphere, 15: 1751–1785

    Article  Google Scholar 

  • Kos A, Amann F, Strozzi T, Delaloye R, Ruette J, Springman S. 2016. Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland. Geophys Res Lett, 43: 12,466–12,474

    Article  Google Scholar 

  • Lacroix P, Bièvre G, Pathier E, Kniess U, Jongmans D. 2018. Use of Sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sens Environ, 215: 507–516

    Article  Google Scholar 

  • Lambrecht A, Mayer C, Wendt A, Floricioiu D, Völksen C. 2018. Elevation change of Fedchenko Glacier, Pamir Mountains, from GNSS field measurements and TanDEM-X elevation models, with a focus on the upper glacier. J Glaciol, 64: 637–648

    Article  Google Scholar 

  • Leinss S, Bernardini E, Jacquemart M, Dokukin M. 2021. Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973-2019). Nat Hazards Earth Syst Sci, 21: 1409–1429

    Article  Google Scholar 

  • Leinss S, Bernhard P. 2021. TanDEM-X: Deriving InSAR height changes and velocity dynamics of great aletsch glacier. IEEE J Sel Top Appl Earth Observations Remote Sens, 14: 4798–4815

    Article  Google Scholar 

  • Li G, Lin H, Ye Q. 2018. Heterogeneous decadal glacier downwasting at the Mt. Everest (Qomolangma) from 2000 to ~2012 based on multi-baseline bistatic SAR interferometry. Remote Sens Environ, 206: 336–349

    Article  Google Scholar 

  • Li J, Li Z W, Zhu J J, Li X, Xu B, Wang Q J, Hu J. 2017. Early 21st century glacier thickness changes in the Central Tien Shan. Remote Sens Environ, 192: 12–29

    Article  Google Scholar 

  • Lipovsky P S, Evans S G, Clague J J, Hopkinson C, Couture R, Bobrowsky P, Ekström G, Demuth M N, Delaney K B, Roberts N J, Clarke G, Schaeffer A. 2008. The July 2007 rock and ice avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada. Landslides, 5: 445–455

    Article  Google Scholar 

  • Liu L, Jiang L, Jiang H, Wang H, Ma N, Xu H. 2019. Accelerated glacier mass loss (2011.2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sens Environ, 231: 111241

    Article  Google Scholar 

  • Martha T R, Roy P, Jain N, Kumar K V, Reddy P S, Nalini J, Sharma S V S P, Shukla A K, Durga R K H V, Narender B, Rao P V N, Muralikrishnan S. 2021. Rock avalanche induced flash flood on 07 February 2021 in Uttarakhand, India. A photogeological reconstruction of the event. Landslides, 18: 2881–2893

    Article  Google Scholar 

  • Maurer J M, Schaefer J M, Rupper S, Corley A. 2019. Acceleration of ice loss across the Himalayas over the past 40 years. Sci Adv, 5: eaav7266

    Article  Google Scholar 

  • Nuth C, Kaab A. 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5: 271–290

    Article  Google Scholar 

  • RGI Consortium, 2017. Randolph Glacier Inventory.A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space. DigitalMedia, Colorado, USA

    Google Scholar 

  • Rieg L, Klug C, Nicholson L, Sailer R. 2018. Pleiades tri-stereo data for glacier investigations.Examples from the European Alps and the Khumbu Himal. Remote Sens, 10: 1563

    Article  Google Scholar 

  • Rolstad C, Haug T, Denby B. 2009. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: Application to the western Svartisen ice cap, Norway. J Glaciol, 55: 666–680

    Article  Google Scholar 

  • Schneider D, Huggel C, Haeberli W, Kaitna R. 2011. Unraveling driving factors for large rock-ice avalanche mobility. Earth Surf Proc Land, 36: 1948–1966

    Article  Google Scholar 

  • Sharma Y, Pasari S, Ching K E, Dikshit O, Kato T, Malik J N, Chang C P, Yen J Y. 2020. Spatial distribution of earthquake potential along the Himalayan arc. Tectonophysics, 791: 228556

    Article  Google Scholar 

  • Shean D E, Bhushan S, Montesano P, Rounce D R, Arendt A, Osmanoglu B. 2020. A systematic, regional assessment of high mountain Asia glacier mass balance. Front Earth Sci, 7: 363

    Article  Google Scholar 

  • Shugar D H, Jacquemart M, Shean D, Bhushan S, Upadhyay K, Sattar A, Schwanghart W, McBride S, de Vries M V W, Mergili M, Emmer A, Deschamps-Berger C, McDonnell M, Bhambri R, Allen S, Berthier E, Carrivick J L, Clague J J, Dokukin M, Dunning S A, Frey H, Gascoin S, Haritashya U K, Huggel C, Kaab A, Kargel J S, Kavanaugh J L, Lacroix P, Petley D, Rupper S, Azam M F, Cook S J, Dimri A P, Eriksson M, Farinotti D, Fiddes J, Gnyawali K R, Harrison S, Jha M, Koppes M, Kumar A, Leinss S, Majeed U, Mal S, Muhuri A, Noetzli J, Paul F, Rashid I, Sain K, Steiner J, Ugalde F, Watson C S, Westoby M J. 2021. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science, 373: 300–306

    Article  Google Scholar 

  • Storni E, Hugentobler M, Manconi A, Loew S. 2020. Monitoring and analysis of active rockslide-glacier interactions (Moosfluh, Switzerland). Geomorphology, 371: 107414

    Article  Google Scholar 

  • van der Woerd J, Owen L A, Tapponnier P, Xiwei X, Kervyn F, Finkel R C, Barnard P L. 2004. Giant, ~M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, northern Tibet: Characteristics, nature and dynamics. Geo Soc Am Bull, 116: 394–406

    Article  Google Scholar 

  • Wang W C, An B S, Wu G J, Yang W, Zhu H F, Guo Y H, Gao Y, Bai L, Zhang F, Zeng C, Wang L, Zhou J, Li X, Li J, Wang Z Y, Zhao Z J, Fu X D, Chen Y Y, Liu J S, Li J L, Yao T D. 2021. Process and mechanism of the glacier collapse induced river blocking disasters occurred at the Sedongpu valley in the Grand Canyon of Yarlung Tsangpo River, Sci Total Environ, under review

    Google Scholar 

  • Zhou Y S, Li Z W, Li J. 2017. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J Glaciol, 63: 331–342

    Article  Google Scholar 

  • Zhou Y S, Li Z W, Li J, Zhao R, Ding X L. 2018. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens Environ, 210: 96–112

    Article  Google Scholar 

  • Zhou Y S, Hu J, Li Z W, Li J, Zhao R, Ding X L. 2019a. Quantifying glacier mass change and its contribution to lake growths in central Kunlun during 2000–2015 from multi-source remote sensing data. J Hydrol, 570: 38–50

    Article  Google Scholar 

  • Zhou Y S, Li Z W, Li J, Zhao R, Ding X L. 2019b. Geodetic glacier mass balance (1975.1999) in the central Pamir using the SRTM DEM and KH-9 imagery. J Glaciol, 65: 309–320

    Article  Google Scholar 

Download references

Acknowledgements

The Pléiades satellite data were commercially purchased from Airbus Intelligence. The Sentinel-2 data can be freely downloaded at the Copernicus Open Access Hub (https://scihub.copernicus.eu/). The ERA5-Land datasets are archived at the Climate Data Store (https://climate.copernicus.eu/climate-data-store). The NASA DEM data were obtained from the EarthData Search website (https://search.earthdata.nasa.gov/search). The HMA DEM data were downloaded from the National Snow and Ice Data Center (NSIDC) (https://nsidc.org/). The Gaofen-1 data were supplied by the Land Satellite Remote Sensing Application Center of the Ministry of Natural Resources of China. The Planet data were provided as part of a science data project by Planet. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41988101 & 42001381), the China Post-Doctoral Program for Innovative Talents (Grant No. BX20200343), and the China Post-Doctoral Science Foundation (Grant No. 2020M670480). The TanDEM-X data were provided as part of a science data project conducted by the German Aerospace Center (Grant No. NTI_BIST7136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Li or Donghai Zheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, X., Zheng, D. et al. The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya. Sci. China Earth Sci. 64, 1909–1921 (2021). https://doi.org/10.1007/s11430-021-9844-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9844-0

Keywords

Navigation