Skip to main content
Log in

Coastline and geomorphological deviations using DSAS techniques over the past 5 decades (1972–2022) in Tirunelveli District, Tamil Nadu, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Understanding the dynamics of shoreline change is essential for efficient coastal management. This research provides a thorough analysis of the long-term changes to the shoreline in the Tamil Nadu district of Tirunelveli, India, spanning five decades (1972–2022). Remote sensing techniques and digital shoreline analysis techniques were employed to investigate the temporal variations and underlying mechanisms influencing shoreline dynamics. Remote sensing methods include satellite imagery analysis, digital shoreline analysis techniques involve GIS-based mapping and measurement of coastal features. The statistical methods like EPR, LRR and NSM techniques were used in this study to identify the shoreline changes. It considers the sedimentary structures of tidal flats and grain size investigations in the region to improve our comprehension of the geological characteristics and sediment dynamics driving shoreline alterations. The findings demonstrate how the shoreline location at Koodankulam changed considerably during the course of the research. This study report spans a sizable length of time and provides significant insights on the long-term behaviour of the Tirunelveli district coastline. Sedimentary structures and grain size investigations provide insights into erosion, deposition patterns, and sediment transport, crucial for understanding shoreline dynamics. The three primary very high erosion hotspots in the research area are Kunjanvilai, Koodankulam, and Kuttam. At a rate of − 23.5, − 23.6, and − 23.6 m/year, maximum erosion is shown by EPR, LRR, and WLR. This study outcomes major two regions like Vijayapathi and Anjugramam are facing more accretion zone. A maximum of 13.33, 11.14, and 11.14 m/year is shown by EPR, LRR, and WLR. According to projection research, the spans will measure 60.67 km in 2042 and 59.62 km in 2032, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable and no datasets were generated are analysed.

References

  • Addo, K. A., Jayson-Quashigah, P. N., & Kufogbe, K. S. (2012). Quantitative analysis of shoreline change using medium resolution satellite imagery in Keta, Ghana. Marine Science, 1(1), 1–9. https://doi.org/10.5923/j.ms.20110101.01

    Article  Google Scholar 

  • Anders, F. J., & Byrnes, M. R. (1991). Accuracy of shoreline change rates as determined from maps and aerial photographs. Shore and Beach, 59(1), 17–26.

    Google Scholar 

  • Anfuso, G., & Martinez Del Pozo, J. A. (2009). Assessment of coastal vulnerability through the use of GIS tools in South Sicily (Italy). Environmental Management, 43, 533–545.

    Article  Google Scholar 

  • Barcelona, A. E., Sugianto, D. N., & Rifai, A. (2015). Wave refraction study on Ujung pangkah waters, Gresik – East Java. J. Oseanografi, 4(2), 434–441.

    Google Scholar 

  • Bird, E. C. F. (1985). Coastline changes: A global review. John Wiley & Sons.

    Google Scholar 

  • Byrnes, M. R., McBride, R. A., & Hiland, M. W. (1991). Accuracy standards and development of a national shoreline change database. In Proceedings of Coastal Sediments '91 (pp. 1027–1042). American Society of Civil Engineers.

  • Camfield, F. E. (1991). When erosion is not erosion. In Proceedings of the Fourth Annual National Beach Preservation Technology Conference (pp. 194–201). Florida Shore and Beach Preservation Association.

  • Cendrero, A. (1989). Mapping and evaluation of coastal areas for planning. Ocean and Shoreline Management, 12(5–6), 427–462. https://doi.org/10.1016/0951-8312(89)90023-4

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893–903.

    Article  Google Scholar 

  • Chandrasekar, N., Viviek, V. J., & Saravanan, S. (2013). Coastal vulnerability and shoreline changes for southern tip of India-remote sensing and GIS approach. Journal of Earth Science & Climatic Change, 04(4), 1000144. https://doi.org/10.4172/2157-7617.1000144

    Article  Google Scholar 

  • Crowell, M. (2006). Historical shoreline mapping and analysis: An historical overview. Retrieved from http://www.csc.noaa.gov/shorecon/shorelinechange.

  • Crowell, M., Leatherman, S. P., & Buckley, M. (1993). Shoreline change rate analysis: Long term versus short term data. Shore and Beach, 61, 13–20.

    Google Scholar 

  • Dean, R. G., & Yoo, C.-H. (1992). Beach-nourishment performance predictions. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(6), 567–586.

    Article  Google Scholar 

  • Dennis, A., Senthilnathan, L., Machendiranathan, M., & Ranith, R. (2018). Shoreline demarcation on Tirunelveli coast analysis moving boundaries using R (AMBUR) statistics. Ecology, Environment and Conservation Journal, 24(3), 1174–1179.

    Google Scholar 

  • Eliot, I., & Clarke, D. (1989). Temporal and spatial bias in the estimation of shoreline rate-of-change statistics from beach survey information. Coastal Management, 17, 129–156.

    Article  Google Scholar 

  • Fuad, M. A. Z., & Fais DA, M. (2017). Automatic detection of decadal shoreline changes on northern coastal of Gresik, East Java – Indonesia. IOP Conference Series: Earth and Environmental Science, 98, 012001. https://doi.org/10.1088/1755-1315/98/1/012001

    Article  Google Scholar 

  • Camfield, F. E., & Morang, A. (1996). Defining and interpreting shoreline change. Ocean & Coastal Management, 32(3), 129–151.

    Article  Google Scholar 

  • Friedman, G. M. (1967). Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. Journal of Sedimentary Petrology, 37(2), 327–354.

    Google Scholar 

  • Grassle, J. E., Laserre, E., McIntyre, A. D., & Ray, G. C. (1990). Marine biodiversity and ecosystem function. Biology International, 23, 19.

    Google Scholar 

  • Grigg, R. W., & Dollar, S. J. (1990). Natural and anthropogenic disturbance on coral reefs. In Z. Dubinsky (Ed.), Ecosystems of the World: Coral reefs (pp. 439–452). Elsevier Science Publishers.

    Google Scholar 

  • Hapke, C., Plant, N., Henderson, R., Schwab, W., & Nelson, T. (2016). Decoupling processes and scales of shoreline morphodynamics. Marine Geology, 381, 42–53. https://doi.org/10.1016/j.margeo.2016.08.008

    Article  Google Scholar 

  • Hapke, C. J., Himmelstoss, E. A., Kratzmann, M. G., List, J. H., & Thieler, E. R. (2010). National assessment of shoreline change: Historical shoreline change along the New England and Mid-Atlantic Coasts. US Geological Survey Open-file Report 2010–1118.

  • Burningham, H., & French, J. (2017). Understanding coastal change using shoreline trend analysis supported by cluster-based segmentation. Geomorphology, 282, 131–149.

    Article  Google Scholar 

  • Holden, H., & Ledrew, E. (1999). Hyperspectral identification of coral reef features. International Journal of Remote Sensing, 17, 703–719.

    Google Scholar 

  • Hornell, J. (1916). The utilization of corals and shells for lime-burning in the Madras presidency. Madras Fish Department Bulletin, 8, 105–125.

    Google Scholar 

  • Moussaid, J., Fora, A. A., Zourarah, B., Maanan, M., & Maanan, M. (2015). Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco. Ocean Engineering, 102, 71–77. https://doi.org/10.1016/j.oceaneng.2015.04.044

    Article  Google Scholar 

  • Morang, A. (1992). Inlet migration and geologic processes at East Pass Florida. Journal of Coastal Research, 8(2), 457–481.

    Google Scholar 

  • Rahman, M, K., Crawford, T. W., & Islam, M. S. (2022). Shoreline change analysis along rivers and Deltas: A systematic review and bibliometric analysis of the shoreline study literature from 2000 to 202.

  • Natarajan, L., Usha, T., Gowrappan, M., Palpanabhan Kasthuri, B., Moorthy, P., & Chokkalingam, L. (2021a). Flood susceptibility analysis in chennai corporation using frequency ratio model. Journal of the Indian Society of Remote Sensing, 49, 1533–1543.

    Article  Google Scholar 

  • Natarajan, L., Sivagnanam, N., Usha, T., Chokkalingam, L., Sundar, S., Gowrappan, M., & Roy, P. D. (2021b). Shoreline changes over last five decades and predictions for 2030 and 2040: A case study from Cuddalore, southeast coast of India. Earth Science Informatics, 14, 1315–1325.

    Article  Google Scholar 

  • Nayak, S. R., et al. (1991). Manual for mapping of coastal wetlands/landforms and shoreline changes using satellite data. Technical Note: IRS-UP/SAC/MCE/ TN/32/91. Space Application Center, Ahmedabad, India.

  • Nunn, P. D., McKeown, M., McCallum, A., Davies, P., John, E., Chandra, R., Thomas, F. R., & Raj, S. N. (2019). Origin, development and prospects of sand islands of the north coast of Viti Levu Island, Fiji, Southwest Pacific. Journal of Coastal Conservation, 23, 1005–1018.

    Article  Google Scholar 

  • Palanisamy, P., Sivakumar, V., Velusamy, P., & Natarajan, L. (2024). Spatio-temporal analysis of shoreline changes and future forecast using remote sensing, GIS and kalman filter model: A case study of Rio de Janeiro, Brazil. Journal of South American Earth Sciences, 133, 104701.

    Article  Google Scholar 

  • Pillai, C. S. G. (1975). An assessment of the effect of environmental and human interference on coral reefs of Palk Bay and Gulf of Mannar along the Indian coast. Seafood Export Journal, 7, 1–13.

    Google Scholar 

  • Prasad, D. H., & Kumar, N. D. (2014). Coastal erosion studies— a review. International Journal of Geosciences, 05(3), 341–345. https://doi.org/10.4236/ijg.2014.53033

    Article  Google Scholar 

  • Rajasree, B. R., Deo, M. C., & Nair, L. S. (2016). Effect of climate change on shoreline shifts at a straight and continuous coast. Estuarine, Coastal and Shelf Science, 183, 221–234. https://doi.org/10.1016/j.ecss.2016.10.034

    Article  Google Scholar 

  • Rajawat, A. S., Chauhan, H. B., Ratheesh, R., Rhode, S., Bhanderi, R. J., Mahapatra, M., Kumar, M., Yadav, R., Abraham, S. P., Singh, S. S., & Keshri, K. N. (2014). Assessment of coastal erosion along Indian coast on 1: 25, 000 scaleusing satellite data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 119–125. https://doi.org/10.5194/isprsarchives-XL-8-119-2014

    Article  Google Scholar 

  • Rajaneesh, A., Logesh, N., Vishnu, C. L., Bouali, E. H., Oommen, T., Midhuna, V., & Sajinkumar, K. S. (2020). Monitoring and mapping of shallow landslides in a tropical environment using persistent scatterer interferometry: A case study from the Western Ghats. India. Geomatics, 1(1), 3–17.

    Article  Google Scholar 

  • Ramsey, K. E., Penland, S., & Roberts, H. H. (1991). Implications of accelerated sea-level rise on Louisiana coastal environments. In Proceedings of Coastal Sediments '91 (pp. 1207–1222). American Society of Civil Engineers.

  • Rao, K., Subraelu, P., & Rajawat, A. (2008). Beach erosion in Visakhapatnam: Causes and remedies. Eastern Geographers, 14(1), 1–6.

    Google Scholar 

  • Roy, P. D., Natarajan, L., & Chokkalingam, L. (2024). Changes in Lu/Lc and vegetation around the Acapulco Bay at southwest Mexico from the hurricane Otis (October 25, 2023). Journal of South American Earth Sciences, 104819.

  • Salghuna, N. N., & Bharathvaj, S. A. (2015). Shoreline change analysis for northern part of the coro-mandel coast. Aquatic Procedia, 4, 317–324.

    Article  Google Scholar 

  • Saxena, S., Geethalakshmi, V., & Lakshmanan, A. (2013). Development of habitation vulnerability assessment framework for coastal hazards: Cuddalore coast in Tamil Nadu, India—a case study. Weather and Climate Extremes, 2, 48–57. https://doi.org/10.1016/j.wace.2013.10.001

    Article  Google Scholar 

  • Sivakumar, V., Sashik Kumar, M. C., Natarajan, L., Roy, P. D., & Chokkalingam, L. (2022). Vulnerability assessment of groundwater in industrialized Tiruppur area of South India using GIS-based DRASTIC model. Journal of the Geological Society of India, 98(5), 696–702.

    Article  CAS  Google Scholar 

  • Sivakumar, V., Ramamoorthy, V. L., Muthaiyan, U. M., Kaliyappan, S., Ravindiran, G., Shanmugam, S., & Abdo, H. G. (2023). Assessing groundwater quality for sustainable drinking and irrigation: A GIS-based hydro-chemical and health risk study in Kovilpatti Taluk, Tamil Nadu. Water, 15(22), 3916.

    Article  CAS  Google Scholar 

  • Smith, G. L., & Zarillo, G. A. (1990). Calculating long-term shoreline recession rates using aerial photography and beach profiling techniques. Journal of Coastal Research, 6(1), 111–120.

    Google Scholar 

  • Thieler, E. R., & Himmelstoss, E. A. (2012). DSAS 4.0: Installation Instructions and User Guide (Updated for Version 4.3). USGS.

  • Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) Version 4.0-An ArcGIS Extension for Calculating Shoreline Change (No. 2008–1278). US Geological Survey.

  • Tucker, J. C., Grant, D. M., & Dykstra, J. D. (2004). NASA’s global orthorectified Landsat data set. Photogrammetric Engineering & Remote Sensing, 70(3), 313–322.

    Article  Google Scholar 

  • Vaidya, A. M., Kori, S. K., & Kudale, M. D. (2015). Shoreline response to coastal structures. Aquatic Procedia, 4, 333–340.

    Article  Google Scholar 

  • Walkden, M., Dickson, M., Thomas, J., & Hall, J. W. (2015). Simulating the shore and cliffs of North Norfolk. Broad Scale Coastal Simulation: New Techniques to Understand and Manage Shorelines in the Third Millennium, 187-211.

  • Woodroffe, C. D., & Murray-Wallace, C. V. (2012). Sea-level rise and coastal change: The past as a guide to the future. Quaternary Science Reviews, 54, 4–11. https://doi.org/10.1016/j.quascirev.2012.05.009

    Article  Google Scholar 

  • Woodroffe, C., Callaghan, D., Cowell, P., Wainwright, D., Rogers, K., & Ranasinghe, R. (2014). A framework for modeling the risks of climate change impacts on Australian coasts. In J. P. Palutikof, S. L. Boulter, J. Barnett, & D. Rissik (Eds.), Applied studies in climate adaptation (pp. 181–189). John Wiley & Sons.

    Chapter  Google Scholar 

  • Young, A. P., & Ashford, S. A. (2006). Application of airborne LIDAR for seacliff volumetric change and beach-sediment budget contributions. Journal of Coastal Research, 22(2), 307-318.

  • Zhang, L., Zhang, Q., & Zhang, Y. (2020). Quantitative analysis of shoreline change using remote sensing techniques: A review. Remote Sensing, 12(17), 2761.

    Google Scholar 

Download references

Funding

This work does not have any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Ambika or S. Vivek.

Ethics declarations

Conflict of interest

The author declare that they have no competing interests.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambika, D., Vivek, S., Sampathkumar, V. et al. Coastline and geomorphological deviations using DSAS techniques over the past 5 decades (1972–2022) in Tirunelveli District, Tamil Nadu, India. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04937-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04937-3

Keywords

Navigation