Skip to main content
Log in

Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Engineering disease-resistant plants can be a powerful solution to the issue of food security. However, it requires addressing two fundamental questions: what genes to express and how to control their expressions. To find a solution, we screen CRISPR-edited upstream open reading frame (uORF) variants in rice, aiming to optimize translational control of disease-related genes. By switching uORF types of the 5′-leader from Arabidopsis TBF1, we modulate the ribosome accessibility to the downstream firefly luciferase. We assume that by switching uORF types using CRISPR, we could generate uORF variants with alternative translation efficiency (CRISPR-aTrE-uORF). These variants, capable of boosting translation for resistance-associated genes and dampening it for susceptible ones, can help pinpoint previously unidentified genes with optimal expression levels. To test the assumption, we screened edited uORF variants and found that enhanced translational suppression of the plastic glutamine synthetase 2 can provide broad-spectrum disease resistance in rice with minimal fitness costs. This strategy, which involves modifying uORFs from none to some, or from some to none or different ones, demonstrates how translational agriculture can speed up the development of disease-resistant crops. This is vital for tackling the food security challenges we face due to growing populations and changing climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The select Ribo-seq and other NGS sequencing data generated in this study have been deposited in Gene Expression Omnibus under accession numbers PRJNA906650 and PRJNA970919, respectively. Supplementary Tables can be accessed on this website (http://www.rnairport.com:443/public/CRISPR_a-TrE_uORF/).

References

  • Ai, G., Liu, J., Fu, X., Li, T., Zhu, H., Zhai, Y., Xia, C., Pan, W., Li, J., Jing, M., et al. (2022). Making use of plant uORFs to control transgene translation in response to pathogen attack. BioDes Res 2022, 9820540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anzalone, A.V., Koblan, L.W., and Liu, D.R. (2020). Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38, 824–844.

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres, J., Parker, J.E., Ainsworth, E.A., Oldroyd, G.E.D., and Schroeder, J.I. (2019). Genetic strategies for improving crop yields. Nature 575, 109–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa, C., Peixeiro, I., and Romao, L. (2013). Gene expression regulation by upstream open reading frames and human disease. PLoS genetics 9, e1003529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutrot, F., and Zipfel, C. (2017). Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol 55, 257–286.

    Article  CAS  PubMed  Google Scholar 

  • Browning, K.S., and Bailey-Serres, J. (2015). Mechanism of cytoplasmic mRNA translation. Arabidopsis Book 13, e0176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo, S.E., Pagliarini, D.J., and Mootha, V.K. (2009). Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 106, 7507–7512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, G., Wang, R., Jiang, Y., Dong, X., Xu, J., Xu, Q., Kan, Q., Luo, Z., Springer, N.M., and Li, Q. (2023). A novel active transposon creates allelic variation through altered translation rate to influence protein abundance. Nucleic Acids Res 51, 595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, K., Ke, R., Du, M., Yi, Y., Chen, Y., Wang, X., Yao, L., Liu, H., Hou, X., Xiong, L., et al. (2022). A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Mol Plant 15, 243–257.

    Article  CAS  PubMed  Google Scholar 

  • Cui, H., Tsuda, K., and Parker, J.E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66, 487–511.

    Article  CAS  PubMed  Google Scholar 

  • Ding, P., and Ding, Y. (2020). Stories of salicylic acid: a plant defense hormone. Trends Plant Sci 25, 549–565.

    Article  CAS  PubMed  Google Scholar 

  • Ding, S., Lv, J., Hu, Z., Wang, J., Wang, P., Yu, J., Foyer, C.H., and Shi, K. (2023). Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J 42, e111858.

    Article  CAS  PubMed  Google Scholar 

  • Dong, O.X., and Ronald, P.C. (2019). Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol 180, 26–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo, M., Mikami, M., Endo, A., Kaya, H., Itoh, T., Nishimasu, H., Nureki, O., and Toki, S. (2019). Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Nat Plants 5, 14–17.

    Article  CAS  PubMed  Google Scholar 

  • Eom, J.S., Luo, D., Atienza-Grande, G., Yang, J., Ji, C., Thi Luu, V., Huguet-Tapia, J.C., Char, S.N., Liu, B., Nguyen, H., et al. (2019). Diagnostic kit for rice blight resistance. Nat Biotechnol 37, 1372–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frailie, T.B., and Innes, R.W. (2021). Engineering healthy crops: molecular strategies for enhancing the plant immune system. Curr Opin Biotechnol 70, 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Gage, J.L., Mali, S., McLoughlin, F., Khaipho-Burch, M., Monier, B., Bailey-Serres, J., Vierstra, R.D., and Buckler, E.S. (2022a). Variation in upstream open reading frames contributes to allelic diversity in maize protein abundance. Proc Natl Acad Sci USA 119, e2112516119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, M., Hao, Z., Ning, Y., and He, Z. (2024). Revisiting growth-defence trade-offs and breeding strategies in crops. Plant Biotechnol J 22, 1198–1205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., et al. (2021). Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 184, 5391–5404.e17.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Cao, H., Zhao, J., Bai, S., Peng, W., Li, J., Sun, L., Chen, L., Lin, Z., Shi, C., et al. (2022). A natural uORF variant confers phosphorus acquisition diversity in soybean. Nat Commun 13, 3796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurr, S.J., and Rushton, P.J. (2005a). Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 23, 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Gurr, S.J., and Rushton, P.J. (2005b). Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23, 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Hachiya, T., Inaba, J., Wakazaki, M., Sato, M., Toyooka, K., Miyagi, A., Kawai-Yamada, M., Sugiura, D., Nakagawa, T., Kiba, T., et al. (2021a). Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nat Commun 12, 4944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Z., Webster, S., and He, S.Y. (2022). Growth-defense trade-offs in plants. Curr Biol 32, R634–R639.

    Article  CAS  PubMed  Google Scholar 

  • Hickey, L.T., Hafeez, A. N., Robinson, H., Jackson, S.A., Leal-Bertioli, S.C.M., Tester, M., Gao, C., Godwin, I.D., Hayes, B.J., and Wulff, B.B.H. (2019). Breeding crops to feed 10 billion. Nat Biotechnol 37, 744–754.

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch, A.G., Ivanov, I.P., and Sonenberg, N. (2016). Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352, 1413–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, K., Tao, X., Yuan, F., Wang, D., and Zhu, J.K. (2018). Precise A·T to G·C base editing in the rice genome. Mol Plant 11, 627–630.

    Article  CAS  PubMed  Google Scholar 

  • Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.L., Zhang, F., et al. (2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J.D.G., Vance, R.E., and Dangl, J.L. (2016). Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395.

    Article  PubMed  Google Scholar 

  • Kim, J.H., Hilleary, R., Seroka, A., and He, S.Y. (2021). Crops of the future: building a climate-resilient plant immune system. Curr Opin Plant Biol 60, 101997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.H., Qi, D., Ashfield, T., Helm, M., and Innes, R.W. (2016). Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351, 684–687.

    Article  CAS  PubMed  Google Scholar 

  • Kourelis, J., and van der Hoorn, R.A.L. (2018). Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H.P., Smoker, M., Rallapalli, G., Thomma, B.P.H.J., Staskawicz, B., et al. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28, 365–369.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R., and Gao, C. (2018a). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J., Sun, Y., Du, J., Zhao, Y., and Xia, L. (2017). Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10, 526–529.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., et al. (2022). Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455–460.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., and Xu, C. (2018b). Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36, 1160–1163.

    Article  CAS  Google Scholar 

  • Li, Z., Xiong, X., Wang, F., Liang, J., and Li, J.F. (2019). Gene disruption through base editing-induced messenger RNA missplicing in plants. New Phytol 222, 1139–1148.

    Article  CAS  PubMed  Google Scholar 

  • Liang, X., and Zhou, J.M. (2018). Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling. Annu Rev Plant Biol 69, 267–299.

    Article  CAS  PubMed  Google Scholar 

  • Liang, X., Shen, W., Sun, H., Migawa, M.T., Vickers, T.A., and Crooke, S.T. (2016). Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat Biotechnol 34, 875–880.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Lin, Q., Jin, S., and Gao, C. (2022). The CRISPR-Cas toolbox and gene editing technologies. Mol Cell 82, 333–347.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., Liu, J., Hu, X., Di, C., Qian, Q., et al. (2019). Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat Plants 5, 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Liu, J., Triplett, L., Leach, J.E., and Wang, G.L. (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52, 213–241.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Ao, K., Yao, J., Zhang, Y., and Li, X. (2021a). Engineering plant disease resistance against biotrophic pathogens. Curr Opin Plant Biol 60, 101987.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Liu, H., Zhang, Y., He, M., Li, R., Meng, W., Wang, Z., Li, X., and Bu, Q. (2021b). Fine-tuning flowering time via genome editing of upstream open reading frames of heading date 2 in rice. Rice 14, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Zhang, X., Yuan, G., Wang, D., Zheng, Y., Ma, M., Guo, L., Bhadauria, V., Peng, Y.L., and Liu, J. (2021c). A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc Natl Acad Sci USA 118, e2110751118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., and Zhu, J.K. (2017). Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10, 523–525.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Xu, G., He, P., and Shan, L. (2016). SERKing coreceptors for receptors. Trends Plant Sci 21, 1017–1033.

    Article  CAS  PubMed  Google Scholar 

  • Niu, R., Zhou, Y., Zhang, Y., Mou, R., Tang, Z., Wang, Z., Zhou, G., Guo, S., Yuan, M., and Xu, G. (2020). uORFlight: a vehicle toward uORF-mediated translational regulation mechanisms in eukaryotes. Database 2020, baaa007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J.C., Perez-Quintero, A., Li, T., Eom, J.S., Li, C., Nguyen, H., Liu, B., et al. (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37, 1344–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, Y., Yang, J., Li, X., and Zhang, Y. (2021). Salicylic acid: biosynthesis and signaling. Annu Rev Plant Biol 72, 761–791.

    Article  CAS  PubMed  Google Scholar 

  • Qin, R., Li, J., Li, H., Zhang, Y., Liu, X., Miao, Y., Zhang, X., and Wei, P. (2019). Developing a highly efficient and wildly adaptive CRISPR-Sa Cas9 toolset for plant genome editing. Plant Biotechnol J 17, 706–708.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren, B., Yan, F., Kuang, Y., Li, N., Zhang, D., Zhou, X., Lin, H., and Zhou, H. (2018). Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant 11, 623–626.

    Article  CAS  PubMed  Google Scholar 

  • Schultink, A., and Steinbrenner, A.D. (2021). A playbook for developing disease-resistant crops through immune receptor identification and transfer. Curr Opin Plant Biol 62, 102089.

    Article  CAS  PubMed  Google Scholar 

  • Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., et al. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35, 441–443.

    Article  CAS  PubMed  Google Scholar 

  • Skamnioti, P., and Gurr, S.J. (2009). Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27, 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Somers, J., Pöyry, T., and Willis, A.E. (2013). A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 45, 1690–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, J., Wang, L., Hui, S., Yang, D., He, Y., and Yuan, M. (2023). Cadmium accumulation regulated by a rice heavy-metal importer is harmful for host plant and leaf bacteria. J Adv Res 45, 43–57.

    Article  CAS  PubMed  Google Scholar 

  • Tian, J., Xu, G., and Yuan, M. (2019). Precise editing enables crop broad-spectrum resistance. Mol Plant 12, 1542–1544.

    Article  CAS  PubMed  Google Scholar 

  • Tian, J., Xu, G., and Yuan, M. (2020). Towards engineering broad-spectrum disease-resistant crops. Trends Plant Sci 25, 424–427.

    Article  CAS  PubMed  Google Scholar 

  • Um, T., Park, T., Shim, J.S., Kim, Y.S., Lee, G.S., Choi, I.Y., Kim, J.K., Seo, J.S., and Park, S.C. (2021). Application of upstream open reading frames (uORFs) editing for the development of stress-tolerant crops. Int J Mol Sci 22, 3743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Schie, C.C.N., and Takken, F.L.W. (2014). Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52, 551–581.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Zhou, L., Shi, H., Chern, M., Yu, H., Yi, H., He, M., Yin, J., Zhu, X., Li, Y., et al. (2018). A single transcription factor promotes both yield and immunity in rice. Science 361, 1026–1028.

    Article  CAS  PubMed  Google Scholar 

  • Wang, N., Tang, C., Fan, X., He, M., Gan, P., Zhang, S., Hu, Z., Wang, X., Yan, T., Shu, W., et al. (2022a). Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 185, 2961–2974.e19.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Wang, K., Li, Z., Li, Y., He, J., Li, H., Wang, B., Xin, T., Tian, H., Tian, J., et al. (2022b). Architecture design of cucurbit crops for enhanced productivity by a natural allele. Nat Plants 8, 1394–1407.

    Article  CAS  PubMed  Google Scholar 

  • Wei, W., and Gao, C. (2022). Gene editing: from technologies to applications in research and beyond. Sci China Life Sci 65, 657–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiffin, N., Karczewski, K.J., Zhang, X., Chothani, S., Smith, M.J., Evans, D.G., Roberts, A.M., Quaife, N.M., Schafer, S., Rackham, O., et al. (2020). Characterising the loss-of-function impact of 5′ untranslated region variants in 15,708 individuals. Nat Commun 11, 2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., and Chen, Q.J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14, 327.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong, X., Li, Z., Liang, J., Liu, K., Li, C., and Li, J.F. (2022). A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Res 50, 3565–3580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, G., Greene, G.H., Yoo, H., Liu, L., Marqués, J., Motley, J., and Dong, X. (2017a). Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature 545, 487–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., and Dong, X. (2017b). uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Z., Xu, X., Gong, Q., Li, Z., Li, Y., Wang, S., Yang, Y., Ma, W., Liu, L., Zhu, B., et al. (2019). Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable tale-binding elements of multiple susceptibility genes in rice. Mol Plant 12, 1434–1446.

    Article  CAS  PubMed  Google Scholar 

  • Xue, C., Qiu, F., Wang, Y., Li, B., Zhao, K.T., Chen, K., and Gao, C. (2023). Tuning plant phenotypes by precise, graded downregulation of gene expression. Nat Biotechnol 41, 1758–1764.

    Article  CAS  PubMed  Google Scholar 

  • Yan, F., Kuang, Y., Ren, B., Wang, J., Zhang, D., Lin, H., Yang, B., Zhou, X., and Zhou, H. (2018). Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11, 631–634.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S., Zhou, G., and Xu, G. (2023). Translation machinery: the basis of translational control. J Genet Genomics, doi: https://doi.org/10.1016/j.jgg.2023.07.009.

  • Zeng, D., Li, X., Huang, J., Li, Y., Cai, S., Yu, W., Li, Y., Huang, Y., Xie, X., Gong, Q., et al. (2020). Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice. Plant Biotechnol J 18, 1348–1350.

    Article  PubMed  Google Scholar 

  • Zhang, H., Si, X., Ji, X., Fan, R., Liu, J., Chen, K., Wang, D., and Gao, C. (2018). Genome editing of upstream open reading frames enables translational control in plants. Nat Biotechnol 36, 894–898.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Zhu, X., Chen, X., and Zhou, J.M. (2022). From plant immunity to crop disease resistance. J Genet Genomics 49, 693–703.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Zhao, J., Wang, D., and Fu, Z.Q. (2023). Rising from the dead: the power of genome editing. Sci China Life Sci 66, 2949–2951.

    Article  PubMed  Google Scholar 

  • Zhong, Z., Sretenovic, S., Ren, Q., Yang, L., Bao, Y., Qi, C., Yuan, M., He, Y., Liu, S., Liu, X., et al. (2019). Improving plant genome editing with high-fidelity xCas9 and non-canonical pam-targeting Cas9-NG. Mol Plant 12, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Niu, R., Tang, Z., Mou, R., Wang, Z., Zhu, S., Yang, H., Ding, P., and Xu, G. (2023). Plant HEM1 specifies a condensation domain to control immune gene translation. Nat Plants 9, 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, S., Yuan, S., Niu, R., Zhou, Y., Wang, Z., and Xu, G. (2024). RNAirport: a deep neural network-based database characterizing representative gene models in plants. J Genet Genomics 20.

  • Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.L., and Gao, C. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36, 950–953.

    Article  CAS  Google Scholar 

  • Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., and Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35, 438–440.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Key Research and Development Program of China (2023ZD04073), the Major Project of Hubei Hongshan Laboratory (2022hszd016), the National Natural Science Foundation of China (32070284, 32172421), the Key Research and Development Program of Hubei Province (2022BFE003) and the Fundamental Research Funds for the Central Universities (2662023PY006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Yuan or Guoyong Xu.

Ethics declarations

A patent (application number: 2024104091412) based on this study has been filed by Wuhan University with G.X., Z.T., R.N. and R.M. as inventors. The author(s) declare that they have no other conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Tang, Z., Niu, R. et al. Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-024-2588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-024-2588-9

Navigation