Skip to main content
Log in

Modeling drug-induced mitochondrial toxicity with human primary cardiomyocytes

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients’ lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV). Comparison of their response to human pluripotent stem cell-derived cardiomyocytes revealed that the latter utilized a mitophagy-based mitochondrial recovery response that was absent in hPCMs. Accordingly, action potential duration was elongated in hPCMs, reflecting clinical incidences of RDV-induced QT prolongation. In a screen for mitochondrial protectants, we identified mitochondrial ROS as a primary mediator of RDV-induced cardiotoxicity. Our study demonstrates the utility of hPCMs in the detection of clinically relevant cardiac toxicities, and offers a framework for hPCM-based high-throughput screening of cardioprotective agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abi-Gerges, N., Indersmitten, T., Truong, K., Nguyen, W., Ratchada, P., Nguyen, N., Page, G., Miller, P.E., and Ghetti, A. (2020a). Multiparametric mechanistic profiling of inotropic drugs in adult human primary cardiomyocytes. Sci Rep 10, 7692.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Abi-Gerges, N., McMahon, C., Vargas, H., Sager, P., Chui, R., Stevens, D., Davila, J., Schaub, J.R., Wu, J.C., del Rio, C., et al. (2019). The West coast regional safety pharmacology society meeting update: Filling translational gaps in safety assessment. J Pharmacol Toxicol Methods 98, 106582.

    Article  CAS  PubMed  Google Scholar 

  • Abi-Gerges, N., Miller, P.E., and Ghetti, A. (2020b). Human heart cardiomyocytes in drug discovery and research: new opportunities in translational sciences. Curr Pharm Biotechnol 21, 787–806.

    Article  CAS  PubMed  Google Scholar 

  • Agency, E.M. (2020). Summary on Compassionate Use. Remdesivir Gilead. Available from URL: https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-remdesivir-gilead_en.pdf.

  • Appu, G.V., Joshi, D.A., Bavage, S.B., and Bavage, S.B. (2021). Adverse drug event reporting of remdesivir. Int J Innov Res Technol 8, 159–161.

    Google Scholar 

  • Arzuk, E., Karakuç, F., and Orhan, H. (2021). Bioactivation of clozapine by mitochondria of the murine heart: possible cause of cardiotoxicity. Toxicology 447, 152628.

    Article  CAS  PubMed  Google Scholar 

  • Belosludtsev, K.N., Starinets, V.S., Talanov, E.Y., Mikheeva, I.B., Dubinin, M.V., and Belosludtseva, N.V. (2021). Alisporivir treatment alleviates mitochondrial dysfunction in the skeletal muscles of C57BL/6NCrl mice with high-fat diet/streptozotocin-induced diabetes mellitus. Int J Mol Sci 22, 9524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair, C.A., and Pruitt, B.L. (2020). Mechanobiology assays with applications in cardiomyocyte biology and cardiotoxicity. Adv Healthc Mater 9, 1901656.

    Article  CAS  Google Scholar 

  • Bolte, S., and Cordelières, F.P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224, 213–232.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Bouitbir, J., Alshaikhali, A., Panajatovic, M.V., Abegg, V.F., Paech, F., and Krähenbühl, S. (2019). Mitochondrial oxidative stress plays a critical role in the cardiotoxicity of sunitinib. Toxicology 426, 152281.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, J., Southworth, R., Medina, R., Davidson, S., Duchen, M., and Shattock, M. (2006). Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res 72, 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Brunmair, B., Staniek, K., Gras, F., Scharf, N., Althaym, A., Clara, R., Roden, M., Gnaiger, E., Nohl, H., Waldhäusl, W., et al. (2004). Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53, 1052–1059.

    Article  CAS  PubMed  Google Scholar 

  • Burridge, P.W., Li, Y.F., Matsa, E., Wu, H., Ong, S.G., Sharma, A., Holmström, A., Chang, A.C., Coronado, M.J., Ebert, A.D., et al. (2016). Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22, 547–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y.P., and Zheng, M. (2019). Mitochondrial dynamics and inter-mitochondrial communication in the heart. Arch Biochem Biophys 663, 214–219.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.W., Shin, J.S., Park, S.J., Jung, E., Park, Y.G., Lee, J., Kim, S.J., Park, H.J., Lee, J. H., Park, S.M., et al. (2020). Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Res 184, 104955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churko, J.M., Garg, P., Treutlein, B., Venkatasubramanian, M., Wu, H., Lee, J., Wessells, Q.N., Chen, S.Y., Chen, W.Y., Chetal, K., et al. (2018). Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 9, 4906.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro, J.M., Nesterenko, V.V., Sicouri, S., GoodrowJr., R.J., Treat, J.A., Desai, M., Wu, Y., Doss, M.X., Antzelevitch, C., and Di Diego, J.M. (2013). Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 60, 36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damiani, R.M., Moura, D.J., Viau, C.M., Caceres, R.A., Henriques, J.A.P., and Saffi, J. (2016). Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 90, 2063–2076.

    Article  CAS  PubMed  Google Scholar 

  • Dhingra, R., Guberman, M., Rabinovich-Nikitin, I., Gerstein, J., Margulets, V., Gang, H., Madden, N., Thliveris, J., and Kirshenbaum, L.A. (2020). Impaired NF-κB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy. Cardiovasc Res 116, 1161–1174.

    Article  CAS  PubMed  Google Scholar 

  • Ding, W.X., and Yin, X.M. (2012). Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393, 547–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn, K.W., Kamocka, M.M., and McDonald, J.H. (2011). A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300, C723–C742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dykens, J.A., and Will, Y. (2007). The significance of mitochondrial toxicity testing in drug development. Drug Discov Today 12, 777–785.

    Article  CAS  PubMed  Google Scholar 

  • El Hadi, H., Vettor, R., and Rossato, M. (2019). Cardiomyocyte mitochondrial dysfunction in diabetes and its contribution in cardiac arrhythmogenesis. Mitochondrion 46, 6–14.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Z.J., Wang, Z.Y., Xu, L., Chen, X.H., Li, X.X., Liao, W.T., Ma, H.K., Jiang, M.D., Xu, T.T., Xu, J., et al. (2020). HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol 36, 101671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gherghiceanu, M., Barad, L., Novak, A., Reiter, I., Itskovitz-Eldor, J., Binah, O., and Popescu, L.M. (2011). Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J Cell Mol Med 15, 2539–2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, R., Goswami, S.K., Feitoza, L.F.B.B., Hammock, B., and Gomes, A.V. (2016). Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts. Int J Cardiol 223, 923–935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goversen, B., Jonsson, M.K., van den Heuvel, N.H., Rijken, R., Vos, M.A., van Veen, T. A., and de Boer, T.P. (2019). The influence of hERG1a and hERG1b isoforms on drug safety screening in iPSC-CMs. Prog Biophys Mol Biol 149, 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Grafton, F., Ho, J., Ranjbarvaziri, S., Farshidfar, F., Budan, A., Steltzer, S., Maddah, M., Loewke, K.E., Green, K., Patel, S., et al. (2021). Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes. eLife 10, e68714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafez, A.A., Jamali, Z., Khezri, S., and Salimi, A. (2021). Thymoquinone reduces mitochondrial damage and death of cardiomyocytes induced by clozapine. Naunyn Schmiedebergs Arch Pharmacol 394, 1675–1684.

    Article  CAS  PubMed  Google Scholar 

  • Hasinoff, B.B., Patel, D., and Wu, X. (2017). Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib. Cardiovasc Toxicol 17, 237–250.

    Article  CAS  PubMed  Google Scholar 

  • He, H., Tao, H., Xiong, H., Duan, S.Z., McGowanJr., F.X., Mortensen, R.M., and Balschi, J.A. (2014). Rosiglitazone causes cardiotoxicity via peroxisome proliferator-activated receptor γ-independent mitochondrial oxidative stress in mouse hearts. Toxicol Sci 138, 468–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hor, J.H., Santosa, M.M., Lim, V.J.W., Ho, B.X., Taylor, A., Khong, Z.J., Ravits, J., Fan, Y., Liou, Y.C., Soh, B.S., et al. (2021). ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3 activation. Cell Death Differ 28, 1379–1397.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, S.J., and Kim, W. (2013). Mitochondrial dynamics in the heart as a novel therapeutic target for cardioprotection. Chonnam Med J 49, 101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirkovský, E., Popelová, O., Křiváková-Stańková, P., Vávrová, A., Hroch, M., Hašková, P., Brcčáková-Doleželová, E., Mičuda, S., Adamcová, M., Šimůnek, T., et al. (2012). Chronic anthracycline cardiotoxicity: molecular and functional analysis with focus on nuclear factor erythroid 2-related factor 2 and mitochondrial biogenesis pathways. J Pharmacol Exp Ther 343, 468–478.

    Article  PubMed  Google Scholar 

  • Jordaan, P., Dumotier, B., Traebert, M., Miller, P.E., Ghetti, A., Urban, L., and Abi-Gerges, N. (2021). Cardiotoxic potential of hydroxychloroquine, chloroquine and azithromycin in adult human primary cardiomyocytes. Toxicol Sci 180, 356–368.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, L.C., Subramanyam, P., Radlicz, C., Trent, C.M., Iyer, V., Colecraft, H.M., and Morrow, J.P. (2016). Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm 13, 1699–1706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karbassi, E., Fenix, A., Marchiano, S., Muraoka, N., Nakamura, K., Yang, X., and Murry, C.E. (2020). Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17, 341–359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerkela, R., Woulfe, K.C., Durand, J.B., Vagnozzi, R., Kramer, D., Chu, T.F., Beahm, C., Chen, M.H., and Force, T. (2009). Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci 2, 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y.S., Yoon, J.W., Kim, D., Choi, S., Kim, H.K., Youm, J.B., Han, J., Heo, S.C., Hyun, S.A., Seo, J.W., et al. (2022). Tomatidine-stimulated maturation of human embryonic stem cell-derived cardiomyocytes for modeling mitochondrial dysfunction. Exp Mol Med 54, 493–502.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kushnareva, Y., Murphy, A.N., and Andreyev, A. (2002). Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368, 545–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwatra, M., Kumar, V., Jangra, A., Mishra, M., Ahmed, S., Ghosh, P., Vohora, D., and Khanam, R. (2016). Ameliorative effect of naringin against doxorubicin-induced acute cardiac toxicity in rats. Pharm Biol 54, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Kwok, M., Lee, C., Li, H.S., Deng, R., Tsoi, C., Ding, Q., Tsang, S.Y., Leung, K.T., Yan, B.P., and Poon, E.N. (2022). Remdesivir induces persistent mitochondrial and structural damage in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 118, 2652–2664.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, A.P., Cameron, R.B., Speiser, J.L., Wolf, B.J., Peterson, Y.K., Schnellmann, R. G., Beeson, C.C., and Rohrer, B. (2015). Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim Biophys Acta 1853, 348–360.

    Article  CAS  PubMed  Google Scholar 

  • Li, A., Gao, M., Jiang, W., Qin, Y., and Gong, G. (2020a). Mitochondrial dynamics in adult cardiomyocytes and heart diseases. Front Cell Dev Biol 8, 584800.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J., Hua, Y., Miyagawa, S., Zhang, J., Li, L., Liu, L., and Sawa, Y. (2020b). hiPSC-derived cardiac tissue for disease modeling and drug discovery. Int J Mol Sci 21, 8893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Liu, H., Zeng, W., and Wei, J. (2017). Edaravone protects against hyperosmolarity-induced oxidative stress and apoptosis in primary human corneal epithelial cells. PLoS ONE 12, e0174437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Yan, J., Zhao, Q., Zhang, Y., and Zhang, Y. (2022). ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression. Front Pharmacol 13, 904314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limberg, S.H., Netter, M.F., Rolfes, C., Rinné, S., Schlichthörl, G., Zuzarte, M., Vassiliou, T., Moosdorf, R., Wulf, H., Daut, J., et al. (2011). TASK-1 channels may modulate action potential duration of human atrial cardiomyocytes. Cell Physiol Biochem 28, 613–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, K.L., Chen, S.D., Lin, K.J., Liou, C.W., Chuang, Y.C., Wang, P.W., Chuang, J.H., and Lin, T.K. (2021). Quality matters? The involvement of mitochondrial quality control in cardiovascular disease. Front Cell Dev Biol 9, 636295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Li, Y., and Chen, Q. (2021). The emerging role of FUNDC1-mediated mitophagy in cardiovascular diseases. Front Physiol 12, 807654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Takimoto, E., Dimaano, V.L., DeMazumder, D., Kettlewell, S., Smith, G., Sidor, A., Abraham, T.P., and O’Rourke, B. (2014). Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res 115, 44–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, J., Zhang, H., Chen, X., Zou, Y., Li, J., Wang, L., Wu, M., Zang, J., Yu, Y., Zhuang, W., et al. (2017). A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase. Free Radic Biol Med 112, 287–297.

    Article  CAS  PubMed  Google Scholar 

  • Magdy, T., Schuldt, A.J.T., Wu, J.C., Bernstein, D., and Burridge, P.W. (2018). Human induced pluripotent stem cell (hiPSC)-derived cells to assess drug cardiotoxicity: opportunities and problems. Annu Rev Pharmacol Toxicol 58, 83–103.

    Article  CAS  PubMed  Google Scholar 

  • Merches, K., Breunig, L., Fender, J., Brand, T., Bätz, V., Idel, S., Kollipara, L., Reinders, Y., Sickmann, A., Mally, A., et al. (2022). The potential of remdesivir to affect function, metabolism and proliferation of cardiac and kidney cells in vitro. Arch Toxicol 96, 2341–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaud, V., Dow, P., Al Rihani, S.B., Deodhar, M., Arwood, M., Cicali, B., and Turgeon, J. (2021). Risk assessment of drug-induced long QT syndrome for some COVID-19 repurposed drugs. Clin Transl Sci 14, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Millien, G., Wang, H., Zhang, Z., Alkon, D.L., and Hongpaisan, J. (2022). PKCε activation restores loss of PKCε, manganese superoxide dismutase, vascular endothelial growth factor, and microvessels in aged and Alzheimer’s disease hippocampus. Front Aging Neurosci 14, 836634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina, C.E., Abu-Taha, I.H., Wang, Q., Rosellã-Díez, E., Kamler, M., Nattel, S., Ravens, U., Wehrens, X.H.T., Hove-Madsen, L., Heijman, J., et al. (2018). Profibrotic, electrical, and calcium-handling remodeling of the atria in heart failure patients with and without atrial fibrillation. Front Physiol 9, 1383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morciano, G., Patergnani, S., Bonora, M., Pedriali, G., Tarocco, A., Bouhamida, E., Marchi, S., Ancora, G., Anania, G., Wieckowski, M.R., et al. (2020). Mitophagy in cardiovascular diseases. J Clin Med 9, 892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musunuru, K., Sheikh, F., Gupta, R.M., Houser, S.R., Maher, K.O., Milan, D.J., Terzic, A., and Wu, J.C. (2018). Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circ-Genomic Precision Med 11.

  • Nabati, M., and Parsaee, H. (2022). Potential cardiotoxic effects of remdesivir on cardiovascular system: a literature review. Cardiovasc Toxicol 22, 268–272.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, N., Nguyen, W., Nguyenton, B., Ratchada, P., Page, G., Miller, P.E., Ghetti, A., and Abi-Gerges, N. (2017). Adult human primary cardiomyocyte-based model for the simultaneous prediction of drug-induced inotropic and pro-arrhythmia risk. Front Physiol 8, 1073.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni, R., Cao, T., Xiong, S., Ma, J., Fan, G.C., Lacefield, J.C., Lu, Y., Tissier, S.L., and Peng, T. (2016). Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic Biol Med 90, 12–23.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, R., Sato, T., Sato, Y., Medin, J.A., Kushimoto, S., and Yanagisawa, T. (2017). Azidothymidine-triphosphate impairs mitochondrial dynamics by disrupting the quality control system. Redox Biol 13, 407–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowis, D., Mączewski, M., Mackiewicz, U., Kujawa, M., Ratajska, A., Wieckowski, M. R., Wilczyński, G.M., Malinowska, M., Bil, J., Salwa, P., et al. (2010). Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am J Pathol 176, 2658–2668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ofir, R. (2021). hiPSC-derived cells as models for drug discovery. Int J Mol Sci 22, 8626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer, J.A., Smith, A.M., Gryshkova, V., Donley, E.L.R., Valentin, J.P., and Burrier, R. E. (2020). A targeted metabolomics-based assay using human induced pluripotent stem cell-derived cardiomyocytes identifies structural and functional cardiotoxicity potential. Toxicol Sci 174, 218–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, L., Sager, P., Yang, X., Shi, H., Sannajust, F., Brock, M., Wu, J.C., Abi-Gerges, N., Lyn-Cook, B., Berridge, B.R., et al. (2019). Workshop report: FDA workshop on improving cardiotoxicity assessment with human-relevant platforms. Circ Res 125, 855–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Ding, C., Jiang, L., Tang, W., Liu, Y., Zhao, L., Yi, Z., Ren, H., Li, C., He, Y., et al. (2022). Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo. Sci China Life Sci 65, 1181–1197.

    Article  CAS  PubMed  Google Scholar 

  • Portella, D.C.N., Rossi, E.A., Paredes, B.D., Bastos, T.M., Meira, C.S., Nonaka, C.V.K., Silva, D.N., Improta-Caria, A., Moreira, D.R.M., Leite, A.C.L., et al. (2021). A novel high-content screening-based method for anti-Trypanosoma cruzi drug discovery using human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Int 2021, 2642807.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafaniello, C., Ferrajolo, C., Sullo, M.G., Gaio, M., Zinzi, A., Scavone, C., Gargano, F., Coscioni, E., Rossi, F., and Capuano, A. (2021). Cardiac events potentially associated to remdesivir: an analysis from the European Spontaneous Adverse Event Reporting System. Pharmaceuticals 14, 611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaccini, D., Montoya-Uribe, V., Aan, F.J., Modesti, L., Potes, Y., Wieckowski, M.R., Krga, I., Glibetic, M., Pinton, P., Giorgi, C., et al. (2020). Mitochondrial function and dysfunction in dilated cardiomyopathy. Front Cell Dev Biol 8, 624216.

    Article  PubMed  Google Scholar 

  • Rana, P., Anson, B., Engle, S., and Will, Y. (2012). Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: bioenergetics and utilization in safety screening. Toxicol Sci 130, 117–131.

    Article  CAS  PubMed  Google Scholar 

  • Romashko, D.N., Marban, E., and O’Rourke, B. (1998). Subcellular metabolic transients and mitochondrial redox waves in heart cells. Proc Natl Acad Sci USA 95, 1618–1623.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronaldson-Bouchard, K., Ma, S.P., Yeager, K., Chen, T., Song, L.J., Sirabella, D., Morikawa, K., Teles, D., Yazawa, M., and Vunjak-Novakovic, G. (2018). Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossato, L.G., Costa, V.M., Dallegrave, E., Arbo, M., Silva, R., Ferreira, R., Amado, F., Dinis-Oliveira, R.J., Duarte, J.A., de Lourdes Bastos, M., et al. (2014). Mitochondrial cumulative damage induced by mitoxantrone: late onset cardiac energetic impairment. Cardiovasc Toxicol 14, 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Sacks, B., Onal, H., Martorana, R., Sehgal, A., Harvey, A., Wastella, C., Ahmad, H., Ross, E., Pjetergjoka, A., Prasad, S., et al. (2021). Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. BMC Pharmacol Toxicol 22, 49.

    Article  CAS  PubMed  Google Scholar 

  • Salimi, A., Eybagi, S., Seydi, E., Naserzadeh, P., Kazerouni, N.P., and Pourahmad, J. (2016). Toxicity of macrolide antibiotics on isolated heart mitochondria: a justification for their cardiotoxic adverse effect. Xenobiotica 46, 82–93.

    Article  CAS  PubMed  Google Scholar 

  • Salimi, A., Neshat, M.R., Naserzadeh, P., and Pourahmad, J. (2019). Mitochondrial permeability transition pore sealing agents and antioxidants protect oxidative stress and mitochondrial dysfunction induced by naproxen, diclofenac and celecoxib. Drug Res (Stuttg) 69, 598–605.

    Article  CAS  PubMed  Google Scholar 

  • Schwach, V., Slaats, R.H., and Passier, R. (2020). Human pluripotent stem cell-derived cardiomyocytes for assessment of anticancer drug-induced cardiotoxicity. Front Cardiovasc Med 7, 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seydi, E., Servati, T., Samiei, F., Naserzadeh, P., and Pourahmad, J. (2020). Toxicity of pioglitazone on mitochondria isolated from brain and heart: an analysis for probable drug-induced neurotoxicity and cardiotoxicity. Drug Res (Stuttg) 70, 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Shao, R., Li, J., Qu, T., Liao, Y., and Chen, M. (2022). Mitophagy: a potential target for pressure overload-induced cardiac remodelling. Oxid Med Cell Longev 2022, 2849985.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, W., Deng, H., Zhang, J., Zhang, Y., Zhang, X., and Cui, G. (2018). Mitochondria-targeting small molecules effectively prevent cardiotoxicity induced by doxorubicin. Molecules 23, 1486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shokrzadeh, M., Shaki, F., Mohammadi, M., Rezagholizadeh, N., and Ebrahimi, F. (2013). Edaravone decreases paraquat toxicity in A549 cells and lung isolated mitochondria. Iran J Pharm Res 13, 675–681.

    Google Scholar 

  • Song, J., Yang, R., Yang, J., and Zhou, L. (2018). Mitochondrial dysfunction-associated arrhythmogenic substrates in diabetes mellitus. Front Physiol 9, 1670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, M., and Dorn, G.W.II (2015). Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab 21, 195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stummann, T.C., Beilmann, M., Duker, G., Dumotier, B., Fredriksson, J.M., Jones, R.L., Hasiwa, M., Kang, Y.J., Mandenius, C.F., Meyer, T., et al. (2009). Report and recommendations of the workshop of the European centre for the validation of alternative methods for drug-induced cardiotoxicity. Cardiovasc Toxicol 9, 107–125.

    Article  PubMed  Google Scholar 

  • Sun, Y., Lu, Y., Saredy, J., Wang, X., DrummerIV, C., Shao, Y., Saaoud, F., Xu, K., Liu, M., Yang, W.Y., et al. (2020). ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 37, 101696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sygitowicz, G., and Sitkiewicz, D. (2022). Mitochondrial quality control: the role in cardiac injury. Front Biosci (Landmark Ed) 27, 096.

    Article  CAS  Google Scholar 

  • Tang, X., Wang, Z., Hu, S., and Zhou, B. (2022). Assessing drug-induced mitochondrial toxicity in cardiomyocytes: implications for preclinical cardiac safety evaluation. Pharmaceutics 14, 1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, D., Shenoy, S., and Sayed, N. (2021). Building multi-dimensional induced pluripotent stem cells-based model platforms to assess cardiotoxicity in cancer therapies. Front Pharmacol 12, 607364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisdale, J.E., Chung, M.K., Campbell, K.B., Hammadah, M., Joglar, J.A., Leclerc, J., and Rajagopalan, B. (2020). Drug-induced arrhythmias: a scientific statement from the American Heart Association. Circulation 142, e214.

    Article  PubMed  Google Scholar 

  • Tolosa, L., Carmona, A., Castell, J.V., Gãmez-Lechãn, M.J., and Donato, M.T. (2015). High-content screening of drug-induced mitochondrial impairment in hepatic cells: effects of statins. Arch Toxicol 89, 1847–1860.

    Article  CAS  PubMed  Google Scholar 

  • Ton, A.T., Nguyen, W., Sweat, K., Miron, Y., Hernandez, E., Wong, T., Geft, V., Macias, A., Espinoza, A., Truong, K., et al. (2021). Arrhythmogenic and antiarrhythmic actions of late sustained sodium current in the adult human heart. Sci Rep 11, 12014.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Touafchia, A., Bagheri, H., Carrié, D., Durrieu, G., Sommet, A., Chouchana, L., and Montastruc, F. (2021). Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): a new safety concerns. Clin Microbiol Infect 27, 791.e5–791.e8.

    Article  CAS  PubMed  Google Scholar 

  • Ulmer, B.M., and Eschenhagen, T. (2020). Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism. Biochim Biophys Acta 1867, 118471.

    Article  CAS  Google Scholar 

  • van der Stel, W., Carta, G., Eakins, J., Darici, S., Delp, J., Forsby, A., Bennekou, S.H., Gardner, I., Leist, M., Danen, E.H.J., et al. (2020). Multiparametric assessment of mitochondrial respiratory inhibition in HepG2 and RPTEC/TERT1 cells using a panel of mitochondrial targeting agrochemicals. Arch Toxicol 94, 2707–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga, Z.V., Ferdinandy, P., Liaudet, L., and Pacher, P. (2015). Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circul Physiol 309, H1453–H1467.

    Article  CAS  Google Scholar 

  • Varricchi, G., Ameri, P., Cadeddu, C., Ghigo, A., Madonna, R., Marone, G., Mercurio, V., Monte, I., Novo, G., Parrella, P., et al. (2018). Antineoplastic drug-induced cardiotoxicity: a redox perspective. Front Physiol 9, 167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Sheehan, R.P., Palmer, A.C., Everley, R.A., Boswell, S.A., Ron-Harel, N., Ringel, A.E., Holton, K.M., Jacobson, C.A., Erickson, A.R., et al. (2019). Adaptation of human iPSC-derived cardiomyocytes to tyrosine kinase inhibitors reduces acute cardiotoxicity via metabolic reprogramming. Cell Syst 8, 412–426.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y.X., Chen, G.A., Song, T.R., Mao, G.H., and Bai, H.Y. (2010). Enhancement of cardiomyocyte differentiation from human embryonic stem cells. Sci China Life Sci 53, 581–589.

    Article  CAS  PubMed  Google Scholar 

  • Wiersma, M., van Marion, D.M.S., Bouman, E.J., Li, J., Zhang, D., Ramos, K.S., Lanters, E.A.H., de Groot, N.M.S., and Brundel, B.J.J.M. (2020). Cell-free circulating mitochondrial DNA: a potential blood-based marker for atrial fibrillation. Cells 9, 1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wills, L.P. (2017). The use of high-throughput screening techniques to evaluate mitochondrial toxicity. Toxicology 391, 34–41.

    Article  CAS  PubMed  Google Scholar 

  • Won, J.H., Park, S., Hong, S., Son, S., and Yu, J.W. (2015). Rotenone-induced impairment of mitochondrial electron transport chain confers a selective priming signal for NLRP3 inflammasome activation. J Biol Chem 290, 27425–27437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Z.J., Yu, J., Fang, Q.J., Lian, J.B., Wang, R.X., He, R.L., and Lin, M.J. (2014). Sodium ferulate protects against daunorubicin-induced cardiotoxicity by inhibition of mitochondrial apoptosis in juvenile rats. J Cardiovasc Pharmacol 63, 360–368.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Liu, G., Gong, J., Zhang, Y., Gu, S., Wan, Z., Yang, P., Nie, Y., Wang, Y., Huang, Z., et al. (2022). Investigating and resolving cardiotoxicity induced by COVID-19 treatments using human pluripotent stem cell-derived cardiomyocytes and engineered heart tissues. Adv Sci 9, 2203388.

    Article  CAS  Google Scholar 

  • Yanagida, S., Satsuka, A., Hayashi, S., Ono, A., and Kanda, Y. (2021). Comprehensive cardiotoxicity assessment of COVID-19 treatments using human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 183, 227–239.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K.C., Bonini, M.G., and DudleyJr., S.C. (2014). Mitochondria and arrhythmias. Free Radic Biol Med 71, 351–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarmohammadi, F., Hayes, A.W., and Karimi, G. (2021). Protective effects of curcumin on chemical and drug-induced cardiotoxicity: a review. Naunyn Schmiedebergs Arch Pharmacol 394, 1341–1353.

    Article  CAS  PubMed  Google Scholar 

  • Ye, L., Zhang, X., Zhou, Q., Tan, B., Xu, H., Yi, Q., Yan, L., Xie, M., Zhang, Y., Tian, J., et al. (2021). Activation of AMPK promotes maturation of cardiomyocytes derived from human induced pluripotent stem cells. Front Cell Dev Biol 9, 644667.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshii, S.R., and Mizushima, N. (2017). Monitoring and measuring autophagy. Int J Mol Sci 18, 1865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Feng, M., Wang, X., Zhang, H., Ding, J., Cheng, Z., and Qian, L. (2021). Peptide Szeto-Schiller 31 ameliorates doxorubicin-induced cardiotoxicity by inhibiting the activation of the p38 MAPK signaling pathway. Int J Mol Med 47, 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, P., Zhang, L., Jiang, Z., Wang, T., Chen, H., Xiong, Y., and Li, Z. (2010). In vitro mitochondrial toxicity of metacavir, a new nucleoside reverse transcriptase inhibitor for treatment of hepatitis B virus. Antimicrob Agents Chemother 54, 4887–4892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Xiao, J., Wang, H., Luo, X., Wang, J., Villeneuve, L.R., Zhang, H., Bai, Y., Yang, B., and Wang, Z. (2006). Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. Am J Physiol Heart Circul Physiol 291, H1446–H1455.

    Article  CAS  Google Scholar 

  • Zhou, B., Shi, X., Tang, X., Zhao, Q., Wang, L., Yao, F., Hou, Y., Wang, X., Feng, W., Wang, L., et al. (2022). Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Sig Transduct Target Ther 7, 254.

    Article  CAS  Google Scholar 

  • Zhou, L., Cortassa, S., Wei, A.C., Aon, M.A., Winslow, R.L., and O’Rourke, B. (2009). Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in Guinea pig cardiomyocytes. Biophys J 97, 1843–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-1-I2M-006, 2023-I2M-1-003, 2022-I2M-2-001, 2021-1-I2M-019), the National Natural Science Foundation of China (82070287, 82088101 and 82025004), and the National Key Research and Development Program of China (2022YFA1104500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingying Zhou.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Supplementary Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Liu, H., Rao, R. et al. Modeling drug-induced mitochondrial toxicity with human primary cardiomyocytes. Sci. China Life Sci. 67, 301–319 (2024). https://doi.org/10.1007/s11427-023-2369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2369-3

Navigation