Skip to main content
Log in

Inflammatory macrophages exacerbate neutrophil-driven joint damage through ADP/P2Y1 signaling in rheumatoid arthritis

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the joints and is associated with excessive immune cell infiltration. However, the complex interactions between the immune cell populations in the RA synovium remain unknown. Here, we demonstrate that inflammatory macrophages in the synovium exacerbate neutrophil-driven joint damage in RA through ADP/P2Y1 signaling. We show that extracellular ADP (eADP) and its receptors are obviously increased in synovial tissues of RA patients as well as collagen-induced arthritis (CIA) mice, and eADP enhances neutrophil infiltration into joints through macrophages producing the chemokine CXCL2, aggravating disease development. Accordingly, the arthritis mouse model had more neutrophils in inflamed joints following ADP injection, whereas P2Y1 deficiency and pharmacologic inhibition restored arthritis severity to basal levels, suggesting a dominant role of ADP/P2Y1 signaling in RA pathology. Moreover, cellular activity of ADP/P2Y1-mediated CXCL2 production was dependent on the Gαq/Ca2+-NF-κB/NFAT pathway in macrophages. Overall, this study reveals a non-redundant role of eADP as a trigger in the pathogenesis of RA through neutrophil recruitment and disrupted tissue homeostasis and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben Addi, A., Cammarata, D., Conley, P.B., Boeynaems, J.M., and Robaye, B. (2010). Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. J Immunol 185, 5900–5906.

    Article  CAS  PubMed  Google Scholar 

  • Bevaart, L., Vervoordeldonk, M.J., and Tak, P.P. (2010). Collagen-induced arthritis in mice. In: Proetzel, G., and Wiles, M., eds. Mouse Models for Drug Discovery. Methods in Molecular Biology (Methods and Protocols). New York: Humana Press. 181–192.

    Chapter  Google Scholar 

  • Cauli, A., Yanni, G., and Panayi, G.S. (1997). Interleukin-1, interleukin-1 receptor antagonist and macrophage populations in rheumatoid arthritis synovial membrane. Rheumatology 36, 935–940.

    Article  CAS  Google Scholar 

  • Chatterjee, C., and Sparks, D.L. (2014). P2X receptors regulate adenosine diphosphate release from hepatic cells. Purinergic Signal 10, 587–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czepielewski, R.S., Porto, B.N., Rizzo, L.B., Roesler, R., Abujamra, A.L., Pinto, L.G., Schwartsmann, G., Cunha, F.D.Q., and Bonorino, C. (2012). Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils. Proc Natl Acad Sci USA 109, 547–552.

    Article  CAS  PubMed  Google Scholar 

  • da Silva, J.L.G., Passos, D.F., Bernardes, V.M., and Leal, D.B.R. (2019). ATP and adenosine: Role in the immunopathogenesis of rheumatoid arthritis. Immunol Lett 214, 55–64.

    Article  CAS  PubMed  Google Scholar 

  • Firestein, G.S., and McInnes, I.B. (2017). Immunopathogenesis of rheumatoid arthritis. Immunity 46, 183–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gachet, C. (2006). Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46, 277–300.

    Article  CAS  PubMed  Google Scholar 

  • Gang, X., Sun, Y., Li, F., Yu, T., Jiang, Z., Zhu, X., Jiang, Q., and Wang, Y. (2017). Identification of key genes associated with rheumatoid arthritis with bioinformatics approach. Medicine 96, e7673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, J.A., Filonzi, E.L., and Ianches, G. (1993). Regulation of macrophage colony-stimulating factor (M-CSF) production in cultured human synovial fibroblasts. Growth Factors 9, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Hollopeter, G., Jantzen, H.M., Vincent, D., Li, G., England, L., Ramakrishnan, V., Yang, R.B., Nurden, P., Nurden, A., Julius, D., et al. (2001). Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409, 202–207.

    Article  CAS  PubMed  Google Scholar 

  • Idzko, M., Dichmann, S., Ferrari, D., Di Virgilio, F., la Sala, A., Girolomoni, G., Panther, E., and Norgauer, J. (2002). Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood 100, 925–932.

    Article  CAS  PubMed  Google Scholar 

  • Idzko, M., Ferrari, D., and Eltzschig, H.K. (2014). Nucleotide signalling during inflammation. Nature 509, 310–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janossy, G., Duke, O., Poulter, L.W., Panayi, G., Bofill, M., and Goldstein, G. (1981). Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immunoregulation. Lancet 318, 839–842.

    Article  Google Scholar 

  • Kang, J.H., Lim, H., Lee, D.S., and Yim, M. (2018). Montelukast inhibits RANKL-induced osteoclast formation and bone loss via CysLTR1 and P2Y12. Mol Med Report 18, 2387–2389.

    CAS  Google Scholar 

  • Khavrutskii, I.V., Grant, B., Taylor, S.S., and McCammon, J.A. (2009). A transition path ensemble study reveals a linchpin role for Mg2+ during rate-limiting ADP release from protein kinase A. Biochemistry 48, 11532–11545.

    Article  CAS  PubMed  Google Scholar 

  • Kumahashi, N., Naitou, K., Nishi, H., Oae, K., Watanabe, Y., Kuwata, S., Ochi, M., Ikeda, M., and Uchio, Y. (2011). Correlation of changes in pain intensity with synovial fluid adenosine triphosphate levels after treatment of patients with osteoarthritis of the knee with high-molecular-weight hyaluronic acid. Knee 18, 160–164.

    Article  PubMed  Google Scholar 

  • Lenain, N., Freund, M., Léon, C., Cazenave, J.P., and Gachet, C. (2003). Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist. J Thromb Haemost 1, 1144–1149.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, B., Pittman, K., Menezes, G.B., Hirota, S.A., Slaba, I., Waterhouse, C.C.M., Beck, P.L., Muruve, D.A., and Kubes, P. (2010). Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366.

    Article  CAS  PubMed  Google Scholar 

  • McInnes, I.B., and Schett, G. (2007). Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7, 429–442.

    Article  CAS  PubMed  Google Scholar 

  • McInnes, I.B., and Schett, G. (2011). The pathogenesis of rheumatoid arthritis. N Engl J Med 365, 2205–2219.

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454, 428–435.

    Article  CAS  PubMed  Google Scholar 

  • Mohr, W., Westerhellweg, H., and Wessinghage, D. (1981). Polymorphonuclear granulocytes in rheumatic tissue destruction. III. an electron microscopic study of PMNs at the pannus-cartilage junction in rheumatoid arthritis. Ann Rheum Dis 40, 396–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, W.A. (2011). Sorting the signals from the signals in the noisy environment of inflammation. Sci Signal 4, pe23.

    Article  PubMed  CAS  Google Scholar 

  • Nahrendorf, M., and Swirski, F.K. (2015). Neutrophil-macrophage communication in inflammation and atherosclerosis. Science 349, 237–238.

    Article  CAS  PubMed  Google Scholar 

  • Nanki, T. (2016). Treatment for rheumatoid arthritis by chemokine blockade. Jpn J Clin Immunol 39, 172–180.

    Article  CAS  Google Scholar 

  • Nefla, M., Holzinger, D., Berenbaum, F., and Jacques, C. (2016). The danger from within: alarmins in arthritis. Nat Rev Rheumatol 12, 669–683.

    Article  CAS  PubMed  Google Scholar 

  • Pelus, L.M., and Fukuda, S. (2006). Peripheral blood stem cell mobilization: The CXCR2 ligand GROβ rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 34, 1010–1020.

    Article  CAS  PubMed  Google Scholar 

  • Scott, D.L., Wolfe, F., and Huizinga, T.W. (2010). Rheumatoid arthritis. Lancet 376, 1094–1108.

    Article  PubMed  Google Scholar 

  • Siouti, E., and Andreakos, E. (2019). The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol 165, 152–169.

    Article  CAS  PubMed  Google Scholar 

  • Swamydas, M., Luo, Y., Dorf, M.E., and Lionakis, M.S. (2015). Isolation of mouse neutrophils. Curr Protoc Immunol 110, 3.20.21–23.

    Article  Google Scholar 

  • Symmons, D., Turner, G., Webb, R., Asten, P., Barrett, E., Lunt, M., Scott, D., and Silman, A. (2002). The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. Rheumatology 41, 793–800.

    Article  CAS  PubMed  Google Scholar 

  • Tak, P.P., and Bresnihan, B. (2000). The pathogenesis and prevention of joint damage in rheumatoid arthritis: advances from synovial biopsy and tissue analysis. Arthritis Rheum 43, 2619–2633.

    Article  CAS  PubMed  Google Scholar 

  • Teixeira, V.H., Olaso, R., Martin-Magniette, M.L., Lasbleiz, S., Jacq, L., Oliveira, C.R., Hilliquin, P., Gut, I., Cornelis, F., and Petit-Teixeira, E. (2009). Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. PLoS ONE 4, e6803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Udalova, I.A., Mantovani, A., and Feldmann, M. (2016). Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12, 472–485.

    Article  CAS  PubMed  Google Scholar 

  • Uderhardt, S., Martins, A.J., Tsang, J.S., Lämmermann, T., and Germain, R. N. (2019). Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177, 541–555.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Sun, L., He, N., An, Z., Yu, R., Li, C., Li, Y., Li, Y., Liu, X., Fang, X., et al. (2021). Increased expression of CXCL2 in ACPA-positive rheumatoid arthritis and its role in osteoclastogenesis. Clin Exp Immunol 203, 194–208.

    Article  CAS  PubMed  Google Scholar 

  • Weinmann, P., Moura, R.A., Caetano-Lopes, J.R., Pereira, P.A., Canhao, H., Queiroz, M.V., and Fonseca, J.E. (2007). Delayed neutrophil apoptosis in very early rheumatoid arthritis patients is abrogated by methotrexate therapy. Clin Experimental Rheumatol 25, 885–887.

    CAS  Google Scholar 

  • Weyand, C.M., and Goronzy, J.J. (2017). Immunometabolism in early and late stages of rheumatoid arthritis. Nat Rev Rheumatol 13, 291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittkowski, H., Foell, D., af Klint, E., De Rycke, L., De Keyser, F., Frosch, M., Ulfgren, A.K., and Roth, J. (2007). Effects of intra-articular corticosteroids and anti-TNF therapy on neutrophil activation in rheumatoid arthritis. Ann Rheum Dis 66, 1020–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woetzel, D., Huber, R., Kupfer, P., Pohlers, D., Pfaff, M., Driesch, D., Häupl, T., Koczan, D., Stiehl, P., Guthke, R., et al. (2014). Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res Ther 16, R84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolpe, S.D., Sherry, B., Juers, D., Davatelis, G., Yurt, R.W., and Cerami, A. (1989). Identification and characterization of macrophage inflammatory protein 2. Proc Natl Acad Sci USA 86, 612–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, H.L., Moots, R.J., and Edwards, S.W. (2014). The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 10, 593–601.

    Article  CAS  PubMed  Google Scholar 

  • Yarilina, A., Park-Min, K.H., Antoniv, T., Hu, X., and Ivashkiv, L.B. (2008). TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat Immunol 9, 378–387.

    Article  CAS  PubMed  Google Scholar 

  • Yegutkin, G.G. (2008). Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783, 673–694.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Qin, J., Zou, J., Lv, Z., Tan, B., Shi, J., Zhao, Y., Ren, H., Liu, M., Qian, M., et al. (2018). Extracellular ADP facilitates monocyte recruitment in bacterial infection via ERK signaling. Cell Mol Immunol 15, 58–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0507001), the National Natural Science Foundation of China (31570896, 31770969, 81672811, 81871250, 81830083, 81902892 and 82001729), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-05-E00011), Shenzhen Municipal Government of China (KQTD20170810160226082), Shanghai Super Postdoctoral Incentive Program, China Postdoctoral Science Foundation (2018M640364), and Shanghai Sailing Program (19YF1414400). The authors thank Dr. Ningli Li (Shanghai Jiaotong University School of Medicine, Shanghai, China) for the gift of the synovial tissues from RA and OA patients; Dr. Juling Liu (Shanghai Jiaotong University School of Medicine, Shanghai, China) for the gift of P2Y12 knockout mice. We thank East China Normal University Multifunctional Platform for Innovation (011) and Flow Cytometry Core Facility of School of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Du or Juliang Qin.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest. All animal experiments conformed to the regulations drafted by the Association for Assessment and Accreditation of Laboratory Animal Care in Shanghai and were approved by the East China Normal University Center for Animal Research Committee (No. AR2013/08002). The clinical studies were approved by the respective Ethics Committees and informed patient consent was obtained.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, W., Zhao, Y. et al. Inflammatory macrophages exacerbate neutrophil-driven joint damage through ADP/P2Y1 signaling in rheumatoid arthritis. Sci. China Life Sci. 65, 953–968 (2022). https://doi.org/10.1007/s11427-020-1957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1957-8

Keywords

Navigation