Skip to main content

Advertisement

Log in

P2X receptors regulate adenosine diphosphate release from hepatic cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2–4 h. Nucleotide release from hepatic cells is stimulated by the Ca2+ ionophore, ionomycin, and by the P2 receptor agonist, 2′3′-O-(4-benzoyl-benzoyl)-adenosine 5′-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10–100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca2+ levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

AK1:

Adenylate kinase

ATP:

Adenosine triphosphate

BzATP:

2′3′-O-(4-Benzoyl-benzoyl)-adenosine 5′-triphosphate

NTPDase:

Ectonucleotidase

P2X:

Ion channel purinergic receptor

P2Y:

G-protein-coupled purinergic receptor

VNUT:

Vesicular nucleotide transporter

References

  1. Chatterjee C, Sparks DL (2012) Extracellular nucleotides inhibit insulin receptor signaling, stimulate autophagy and control lipoprotein secretion. PLoS ONE 7:e36916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sparks DL, Chatterjee C (2012) Purinergic signaling, dyslipidemia and inflammatory disease. Cell Physiol Biochem 30:1333–1339

    Article  CAS  PubMed  Google Scholar 

  3. von Albertini M, Palmetshofer A, Kaczmarek E, Koziak K, Stroka D, Grey ST, Stuhlmeier KM, Robson SC (1998) Extracellular ATP and ADP activate transcription factor NF-kappa B and induce endothelial cell apoptosis. Biochem Biophys Res Commun 248:822–829

    Article  Google Scholar 

  4. Aga M, Watters JJ, Pfeiffer ZA, Wiepz GJ, Sommer JA, Bertics PJ (2004) Evidence for nucleotide receptor modulation of cross talk between MAP kinase and NF-kappa B signaling pathways in murine RAW 264.7 macrophages. Am J Physiol Cell Physiol 286:C923–C930

    Article  CAS  PubMed  Google Scholar 

  5. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532

    Article  CAS  PubMed  Google Scholar 

  6. Trautmann A (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2:e6

    Article  Google Scholar 

  7. DiVirgilio F, Solini A (2002) P2 receptors: new potential players in atherosclerosis. Br J Pharmacol 135:831–842

    Article  CAS  Google Scholar 

  8. Sellers MB, Tricoci P, Harrington RA (2009) A new generation of antiplatelet agents. Curr Opin Cardiol 24:307–312

    Article  PubMed  Google Scholar 

  9. Hohenstein B, Renk S, Lang K, Daniel C, Freund M, Leon C, Amann KU, Gachet C, Hugo CP (2007) P2Y1 gene deficiency protects from renal disease progression and capillary rarefaction during passive crescentic glomerulonephritis. J Am Soc Nephrol 18:494–505

    Article  CAS  PubMed  Google Scholar 

  10. Hechler B, Freund M, Ravanat C, Magnenat S, Cazenave JP, Gachet C (2008) Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors. Circulation 118:754–763

    Article  CAS  PubMed  Google Scholar 

  11. Ji X, Naito Y, Weng H, Endo K, Ma X, Iwai N (2012) P2X7 deficiency attenuates hypertension and renal injury in deoxycorticosterone acetate-salt hypertension. Am J Physiol Renal Physiol 303:F1207–F1215

    Article  CAS  PubMed  Google Scholar 

  12. Ayata CK, Ganal SC, Hockenjos B, Willim K, Vieira RP, Grimm M, Robaye B, Boeynaems JM, Di VF, Pellegatti P, Diefenbach A, Idzko M, Hasselblatt P (2012) Purinergic P2Y(2) receptors promote neutrophil infiltration and hepatocyte death in mice with acute liver injury. Gastroenterology 143:1620–1629

    Article  CAS  PubMed  Google Scholar 

  13. Sun S, Xia S, Ji Y, Kersten S, Qi L (2012) The ATP-P2X7 signaling axis is dispensable for obesity-associated inflammasome activation in adipose tissue. Diabetes 61:1471–1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hoque R, Sohail MA, Salhanick S, Malik AF, Ghani A, Robson SC, Mehal WZ (2012) P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice. Am J Physiol Gastrointest Liver Physiol 302:G1171–G1179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fustin JM, Doi M, Yamada H, Komatsu R, Shimba S, Okamura H (2012) Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep 1:341–349

    Article  CAS  PubMed  Google Scholar 

  16. Kukulski F, Levesque SA, Sevigny J (2011) Impact of ectoenzymes on p2 and p1 receptor signaling. Adv Pharmacol 61:263–299

    Article  CAS  PubMed  Google Scholar 

  17. Deaglio S, Robson SC (2011) Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol 61:301–332

    Article  CAS  PubMed  Google Scholar 

  18. Enjyoji K, Kotani K, Thukral C, Blumel B, Sun X, Wu Y, Imai M, Friedman D, Csizmadia E, Bleibel W, Kahn BB, Robson SC (2008) Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 57:2311–2320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8:359–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Manohar M, Hirsh MI, Chen Y, Woehrle T, Karande AA, Junger WG (2012) ATP release and autocrine signaling through P2X4 receptors regulate gammadelta T cell activation. J Leukoc Biol 92:787–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gutierrez-Martin Y, Bustillo D, Gomez-Villafuertes R, Sanchez-Nogueiro J, Torregrosa-Hetland C, Binz T, Gutierrez LM, Miras-Portugal MT, Artalejo AR (2011) P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells. J Biol Chem 286:11370–11381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Emmett DS, Feranchak A, Kilic G, Puljak L, Miller B, Dolovcak S, McWilliams R, Doctor RB, Fitz JG (2008) Characterization of ionotrophic purinergic receptors in hepatocytes. Hepatology 47:698–705

    Article  CAS  PubMed  Google Scholar 

  23. Gutierrez-Martin Y, Bustillo D, Gomez-Villafuertes R, Sanchez-Nogueiro J, Torregrosa-Hetland C, Binz T, Gutierrez LM, Miras-Portugal MT, Artalejo AR (2011) P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells. J Biol Chem 286:11370–11381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Brandao-Burch A, Key ML, Patel JJ, Arnett TR, Orriss IR (2012) The P2X7 receptor is an important regulator of extracellular ATP levels. Front Endocrinol (Lausanne) 3:41

    Google Scholar 

  25. DiVirgilio F, Boeynaems JM, Robson SC (2009) Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 9:507–513

    Article  CAS  Google Scholar 

  26. Bours MJ, Dagnelie PC, Giuliani AL, Wesselius A, Di VF (2011) P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed) 3:1443–1456

    Article  Google Scholar 

  27. Solini A, Chiozzi P, Morelli A, Passaro A, Fellin R, Di VF (2003) Defective P2Y purinergic receptor function: a possible novel mechanism for impaired glucose transport. J Cell Physiol 197:435–444

    Article  CAS  PubMed  Google Scholar 

  28. Solini A, Chiozzi P, Morelli A, Adinolfi E, Rizzo R, Baricordi OR, Di VF (2004) Enhanced P2X7 activity in human fibroblasts from diabetic patients: a possible pathogenetic mechanism for vascular damage in diabetes. Arterioscler Thromb Vasc Biol 24:1240–1245

    Article  CAS  PubMed  Google Scholar 

  29. Schofl C, Ponczek M, Mader T, Waring M, Benecke H, von zur MA, Mix H, Cornberg M, Boker KH, Manns MP, Wagner S (1999) Regulation of cytosolic free calcium concentration by extracellular nucleotides in human hepatocytes. Am J Physiol 276:G164–G172

    CAS  PubMed  Google Scholar 

  30. Pandey NR, Renwick J, Misquith A, Sokoll K, Sparks DL (2008) Linoleic acid-enriched phospholipids act through peroxisome proliferator-activated receptors alpha to stimulate hepatic apolipoprotein A-I secretion. Biochemistry 47:1579–1587

    Article  CAS  PubMed  Google Scholar 

  31. Sumi Y, Woehrle T, Chen Y, Yao Y, Li A, Junger WG (2010) Adrenergic receptor activation involves ATP release and feedback through purinergic receptors. Am J Physiol Cell Physiol 299:C1118–C1126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, Robson SC (2007) CD39 and control of cellular immune responses. Purinergic Signal 3:171–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mistafa O, Hogberg J, Stenius U (2008) Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells. Biochem Biophys Res Commun 365:131–136

    Article  CAS  PubMed  Google Scholar 

  34. Morley P, Whitfield JF (1993) The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types. J Cell Physiol 156:219–225

    Article  CAS  PubMed  Google Scholar 

  35. Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Takai E, Tsukimoto M, Harada H, Sawada K, Moriyama Y, Kojima S (2012) Autocrine regulation of TGF-beta1-induced cell migration by exocytosis of ATP and activation of P2 receptors in human lung cancer cells. J Cell Sci 125:5051–5060

    Article  CAS  PubMed  Google Scholar 

  37. Colombaioni L, Frago LM, Varela-Nieto I, Pesi R, Garcia-Gil M (2002) Serum deprivation increases ceramide levels and induces apoptosis in undifferentiated HN9.10e cells. Neurochem Int 40:327–336

    Article  CAS  PubMed  Google Scholar 

  38. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295:C752–C760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lohman AW, Billaud M, Isakson BE (2012) Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 95:269–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    Article  CAS  PubMed  Google Scholar 

  41. Suplat-Wypych D, Dygas A, Baranska J (2010) 2′, 3′-O-(4-benzoylbenzoyl)-ATP-mediated calcium signaling in rat glioma C6 cells: role of the P2Y(2) nucleotide receptor. Purinergic Signal 6:317–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Feranchak AP, Roman RM, Schwiebert EM, Fitz JG (1998) Phosphatidylinositol 3-kinase contributes to cell volume regulation through effects on ATP release. J Biol Chem 273:14906–14911

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Sparks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Adenylate kinase inactivation has no effect on nucleotide release. (A) Hepatic cells were transfected with either negative control (si-Ctrl) or adenylate kinase (AK1) siRNA and incubated for 48 h. Hepatic cells were then incubated in FBS-depleted media overnight, media was changed and media aliquots were sampled (A) or treated with 100 μM of the P2 receptor agonist, BzATP (B). Media ATP&ADP concentrations were determined by bioluminescence assay and values are expressed as mean ± SD of 3 independent experiments. (PDF 41 kb)

Supplemental Figure 2

P2X receptor inhibition blocks ADP release. (A) Hepatic cells were incubated in FBS-depleted media overnight and then media was changed. Cells were treated with the P2X receptor inhibitor, A438079 (100 μM) and media aliquots were sampled over 120 min. Media ATP and ADP concentrations were determined by bioluminescence assay and values are expressed as mean ± SD of 3 independent experiments. *P < 0.05 vs control (B) A438079 treated cells were treated with 10 μM of the P2 receptor agonist, BzATP and media ATP&ADP concentrations were determined by bioluminescence assay and values are expressed as mean ± SD of 3 independent experiments. (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, C., Sparks, D.L. P2X receptors regulate adenosine diphosphate release from hepatic cells. Purinergic Signalling 10, 587–593 (2014). https://doi.org/10.1007/s11302-014-9419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9419-2

Keywords

Navigation