Skip to main content
Log in

Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Pain is a multidimensional subjective experience with biological, psychological, and social factors. Whereas acute pain can be a warning signal for the body to avoid excessive injury, long-term and ongoing pain may be developed as chronic pain. There are more than 100 million people in China living with chronic pain, which has raised a huge socioeconomic burden. Studying the mechanisms of pain and developing effective analgesia approaches are important for basic and clinical research. Recently, with the development of brain imaging and data analytical approaches, the neural mechanisms of chronic pain have been widely studied. In the first part of this review, we briefly introduced the magnetic resonance imaging and conventional analytical approaches for brain imaging data. Then, we reviewed brain alterations caused by several chronic pain disorders, including localized and widespread primary pain, primary headaches and orofacial pain, musculoskeletal pain, and neuropathic pain, and present meta-analytical results to show brain regions associated with the pathophysiology of chronic pain. Next, we reviewed brain changes induced by pain interventions, such as pharmacotherapy, neuromodulation, and acupuncture. Lastly, we reviewed emerging studies that combined advanced machine learning and neuroimaging techniques to identify diagnostic, prognostic, and predictive biomarkers in chronic pain patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamsen, R., Dietz, M., Lodahl, S., Roepstorff, A., Zachariae, R., Østergaard, L., and Svensson, P. (2010). Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain. Pain 151, 825–833.

    PubMed  Google Scholar 

  • Alexander, A.L., Lee, J.E., Lazar, M., and Field, A.S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329.

    PubMed  PubMed Central  Google Scholar 

  • Alshuft, H.M., Condon, L.A., Dineen, R.A., and Auer, D.P. (2016). Cerebral cortical thickness in chronic pain due to knee osteoarthritis: The effect of pain duration and pain sensitization. PLoS ONE 11, e0161687.

    PubMed  PubMed Central  Google Scholar 

  • Amin, F.M., Hougaard, A., Magon, S., Sprenger, T., Wolfram, F., Rostrup, E., and Ashina, M. (2018). Altered thalamic connectivity during spontaneous attacks of migraine without aura: A resting-state fMRI study. Cephalalgia 38, 1237–1244.

    PubMed  Google Scholar 

  • Androulakis, X.M., Krebs, K., Peterlin, B.L., Zhang, T., Maleki, N., Sen, S., Rorden, C., and Herath, P. (2017). Modulation of intrinsic resting-state fMRI networks in women with chronic migraine. Neurology 89, 163–169.

    PubMed  PubMed Central  Google Scholar 

  • Antal, A., Polania, R., Schmidt-Samoa, C., Dechent, P., and Paulus, W. (2011). Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage 55, 590–596.

    PubMed  Google Scholar 

  • Apkarian, V.A., Sosa, Y., Krauss, B.R., Thomas, S.P., Fredrickson, B.E., Levy, R.E., Harden, N.R., and Chialvo, D.R. (2004). Chronic pain patients are impaired on an emotional decision-making task. Pain 108, 129–136.

    PubMed  Google Scholar 

  • Arkink, E.B., Schmitz, N., Schoonman, G.G., van Vliet, J.A., Haan, J., van Buchem, M.A., Ferrari, M.D., and Kruit, M.C. (2017). The anterior hypothalamus in cluster headache. Cephalalgia 37, 1039–1050.

    PubMed  Google Scholar 

  • Arngrim, N., Hougaard, A., Ahmadi, K., Vestergaard, M.B., Schytz, H.W., Amin, F.M., Larsson, H.B.W., Olesen, J., Hoffmann, M.B., and Ashina, M. (2017). Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Ann Neurol 82, 925–939.

    PubMed  Google Scholar 

  • Arnold, L.M., Lu, Y., Crofford, L.J., Wohlreich, M., Detke, M.J., Iyengar, S., and Goldstein, D.J. (2004). A double-blind, multicenter trial comparing duloxetine with placebo in the treatment of fibromyalgia patients with or without major depressive disorder. Arthritis Rheum 50, 2974–2984.

    CAS  PubMed  Google Scholar 

  • Aurora, S., Cao, Y., Bowyer, S., and Welch, K.M.A. (1999). The occipital cortex is hyperexcitable in migraine: experimental evidence. Headache 39, 469–476.

    CAS  PubMed  Google Scholar 

  • Bagarinao, E., Johnson, K.A., Martucci, K.T., Ichesco, E., Farmer, M.A., Labus, J., Ness, T.J., Harris, R., Deutsch, G., Apkarian, V.A., et al. (2014). Preliminary structural MRI based brain classification of chronic pelvic pain: A MAPP network study. Pain 155, 2502–2509.

    PubMed  PubMed Central  Google Scholar 

  • Baliki, M.N., Baria, A.T., and Apkarian, A.V. (2011). The cortical rhythms of chronic back pain. J Neurosci 31, 13981–13990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baliki, M.N., Geha, P.Y., Apkarian, A.V., and Chialvo, D.R. (2008). Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28, 1398–1403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baliki, M.N., Petre, B., Torbey, S., Herrmann, K.M., Huang, L., Schnitzer, T.J., Fields, H.L., and Apkarian, A.V. (2012). Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 15, 1117–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baron, R., Binder, A., and Wasner, G. (2010). Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9, 807–819.

    PubMed  Google Scholar 

  • Barroso, J., Vigotsky, A.D., Branco, P., Reis, A.M., Schnitzer, T.J., Galhardo, V., and Apkarian, A.V. (2020). Brain gray matter abnormalities in osteoarthritis pain: a cross-sectional evaluation. Pain 161, 2167–2178.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra, L., Morris, S., Bazes, S., Gostic, R., Sherman, S., Gostic, J., Pendse, G., Moulton, E., Scrivani, S., Keith, D., et al. (2006). Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 26, 10646–10657.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra, L., Schwartzman, R.J., Kiefer, R.T., Rohr, P., Moulton, E.A., Wallin, D., Pendse, G., Morris, S., and Borsook, D. (2009). CNS measures of pain responses pre- and post-anesthetic ketamine in a patient with complex regional pain syndrome. Pain Med 16, 2368–2385.

    Google Scholar 

  • Berman, B.M., Langevin, H.M., Witt, C.M., and Dubner, R. (2010). Acupuncture for chronic low back pain. N Engl J Med 363, 454–461.

    CAS  PubMed  Google Scholar 

  • Biswal, B., Zerrin Yetkin, F., Haughton, V.M., and Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34, 537–541.

    CAS  PubMed  Google Scholar 

  • Borsook, D., Edwards, R., Elman, I., Becerra, L., and Levine, J. (2013). Pain and analgesia: the value of salience circuits. Prog Neurobiol 104, 93–105.

    PubMed  PubMed Central  Google Scholar 

  • Borsook, D., Maleki, N., Becerra, L., and McEwen, B. (2012). Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron 73, 219–234.

    CAS  PubMed  Google Scholar 

  • Bosma, R.L., Cheng, J.C., Rogachov, A., Kim, J.A., Hemington, K.S., Osborne, N.R., Venkat Raghavan, L., Bhatia, A., and Davis, K.D. (2018). Brain dynamics and temporal summation of pain predicts neuropathic pain relief from ketamine infusion. Anesthesiology 129, 1015–1024.

    PubMed  Google Scholar 

  • Burgmer, M., Gaubitz, M., Konrad, C., Wrenger, M., Hilgart, S., Heuft, G., and Pfleiderer, B. (2009). Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala in patients with fibromyalgia. Psychosom Med 71, 566–573.

    PubMed  Google Scholar 

  • Burke, M.J., Joutsa, J., Cohen, A.L., Soussand, L., Cooke, D., Burstein, R., and Fox, M.D. (2020). Mapping migraine to a common brain network. Brain 143, 541–553.

    PubMed  PubMed Central  Google Scholar 

  • Cagnie, B., Coppieters, I., Denecker, S., Six, J., Danneels, L., and Meeus, M. (2014). Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Semin Arthritis Rheum 44, 68–75.

    PubMed  Google Scholar 

  • Cao, J., Orr, S.P., Wilson, G., and Kong, J. (2020). Imagined and actual acupuncture effects on chronic low back pain: a preliminary study. Neural Plast 2020, 1–9.

    Google Scholar 

  • Cao, J., Tu, Y., Orr, S.P., Lang, C., Park, J., Vangel, M., Chen, L., Gollub, R., and Kong, J. (2018). Analgesic effects evoked by real and imagined acupuncture: a neuroimaging study. Cereb Cortex 29, 3220–3231.

    PubMed Central  Google Scholar 

  • Chappell, A.S., Desaiah, D., Liu-Seifert, H., Zhang, S., Skljarevski, V., Belenkov, Y., and Brown, J.P. (2011). A double-blind, randomized, placebo-controlled study of the efficacy and safety ofduloxetine for the treatmentofchronic pain due to osteoarthritis of the knee. Pain Pract 11, 33–41.

    PubMed  Google Scholar 

  • Chappell, A.S., Ossanna, M.J., Liu-Seifert, H., Iyengar, S., Skljarevski, V., Li, L.C., Bennett, R.M., and Collins, H. (2009). Duloxetine, a centrally acting analgesic, in the treatment of patients with osteoarthritis knee pain: A 13-week, randomized, placebo-controlled trial. Pain 146, 253–260.

    CAS  PubMed  Google Scholar 

  • Chen, W.T., Chou, K.H., Lee, P.L., Hsiao, F.J., Niddam, D.M., Lai, K.L., Fuh, J.L., Lin, C.P., and Wang, S.J. (2018). Comparison of gray matter volume between migraine and “strict-criteria” tension-type headache. J Headache Pain 19, 4.

    PubMed  PubMed Central  Google Scholar 

  • Chen, X., Spaeth, R.B., Retzepi, K., Ott, D., and Kong, J. (2014). Acupuncture modulates cortical thickness and functional connectivity in knee osteoarthritis patients. Sci Rep 4, 6482.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Chen, X., Liu, M., Liu, S., Ma, L., and Yu, S. (2017). Disrupted functional connectivity of periaqueductal gray subregions in episodic migraine. J Headache Pain 18, 36.

    PubMed  PubMed Central  Google Scholar 

  • Cheng, J.C., Rogachov, A., Hemington, K.S., Kucyi, A., Bosma, R.L., Lindquist, M.A., Inman, R.D., and Davis, K.D. (2018). Multivariate machine learning distinguishes cross-network dynamic functional connectivity patterns in state and trait neuropathic pain. Pain 159, 1764–1776.

    PubMed  Google Scholar 

  • Chong, C.D., Dumkrieger, G.M., and Schwedt, T.J. (2017). Structural co-variance patterns in migraine: a cross-sectional study exploring the role of the hippocampus. Headache 57, 1522–1531.

    PubMed  PubMed Central  Google Scholar 

  • Chong, C.D., Gaw, N., Fu, Y., Li, J., Wu, T., and Schwedt, T.J. (2016). Migraine classification using magnetic resonance imaging resting-state functional connectivity data. Cephalalgia 37, 828–844.

    PubMed  Google Scholar 

  • Chong, C.D., Schwedt, T.J., and Hougaard, A. (2019). Brain functional connectivity in headache disorders: A narrative review of MRI investigations. J Cereb Blood Flow Metab 39, 650–669.

    PubMed  Google Scholar 

  • Coppola, G., Di Renzo, A., Tinelli, E., Di Lorenzo, C., Scapeccia, M., Parisi, V., Serrao, M., Evangelista, M., Ambrosini, A., Colonnese, C., et al. (2018). Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 38, 846–854.

    PubMed  Google Scholar 

  • Coppola, G., Di Renzo, A., Tinelli, E., Lepre, C., Di Lorenzo, C., Di Lorenzo, G., Scapeccia, M., Parisi, V., Serrao, M., Colonnese, C., et al. (2016). Thalamo-cortical network activity between migraine attacks: Insights from MRI-based microstructural and functional resting-state network correlation analysis. J Headache Pain 17, 100.

    PubMed  PubMed Central  Google Scholar 

  • Damaraju, E., Allen, E.A., Belger, A., Ford, J.M., McEwen, S., Mathalon, D.H., Mueller, B.A., Pearlson, G.D., Potkin, S.G., Preda, A., et al. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin 5, 298–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, K.D., Flor, H., Greely, H.T., Iannetti, G.D., Mackey, S., Ploner, M., Pustilnik, A., Tracey, I., Treede, R.D., and Wager, T.D. (2017). Brain imaging tests for chronic pain: Medical, legal and ethical issues and recommendations. Nat Rev Neurol 13, 624–638.

    PubMed  Google Scholar 

  • DeSouza D.D., Hodaie, M., and Davis, K.D. (2014). Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia. Pain 155, 37–44.

    PubMed  Google Scholar 

  • DeSouza, D.D., Moayedi, M., Chen, D.Q., Davis, K.D., and Hodaie, M. (2013). Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory-triggered neuropathic pain. PLoS ONE 8, e66340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhond, R.P., Yeh, C., Park, K., Kettner, N., and Napadow, V. (2008). Acupuncture modulates resting state connectivity in default and sensorimotor brain networks. Pain 136, 407–418.

    PubMed  PubMed Central  Google Scholar 

  • Egorova, N., Gollub, R.L., and Kong, J. (2015). Repeated verum but not placebo acupuncture normalizes connectivity in brain regions dysregulated in chronic pain. Neurolmage Clin 9, 430–435.

    Google Scholar 

  • Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., and Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30, 2907–2926.

    PubMed  PubMed Central  Google Scholar 

  • Esmaeilpour, Z., Shereen, A.D., Ghobadi-Azbari, P., Datta, A., Woods, A. J., Ironside, M., O’Shea, J., Kirk, U., Bikson, M., and Ekhtiari, H. (2020). Methodology for tDCS integration with fMRI. Hum Brain Mapp 41, 1950–1967.

    PubMed  Google Scholar 

  • Fenton, B.W., Palmieri, P.A., Boggio, P., Fanning, J., and Fregni, F. (2009). A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain Stimul 2, 103–107.

    PubMed  Google Scholar 

  • Flodin, P., Martinsen, S., Löfgren, M., Bileviciute-Ljungar, I., Kosek, E., and Fransson, P. (2014). Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. Brain Connect 4, 587–594.

    PubMed  PubMed Central  Google Scholar 

  • Fregni, F., Boggio, P.S., Lima, M.C., Ferreira, M.J.L., Wagner, T., Rigonatti, S.P., Castro, A.W., Souza, D.R., Riberto, M., Freedman, S. D., et al. (2006). A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122, 197–209.

    PubMed  Google Scholar 

  • Fregni, F., Freedman, S., and Pascual-Leone, A. (2007). Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol 6, 188–191.

    PubMed  Google Scholar 

  • Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., and Frackowiak, R.S.J. (1994). Statistical parametric maps in functional imaging: A general linear approach. Hum Brain Mapp 2, 189–210.

    Google Scholar 

  • Fu, Z., Caprihan, A., Chen, J., Du, Y., Adair, J.C., Sui, J., Rosenberg, G.A., and Calhoun, V.D. (2019). Altered static and dynamic functional network connectivity in Alzheimer’s disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum Brain Mapp 40, 3203–3221.

    PubMed  PubMed Central  Google Scholar 

  • Fu, Z., Tu, Y., Di, X., Du, Y., Pearlson, G.D., Turner, J.A., Biswal, B.B., Zhang, Z., and Calhoun, V.D. (2018a). Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: An application to schizophrenia. NeuroImage 180, 619–631.

    PubMed  Google Scholar 

  • Fu, Z., Tu, Y., Di, X., Du, Y., Sui, J., Biswal, B.B., Zhang, Z., de Lacy, N., and Calhoun, V.D. (2018b). Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. NeuroImage 190, 191–204.

    PubMed  Google Scholar 

  • Giesecke, T., Gracely, R.H., Grant, M.A.B., Nachemson, A., Petzke, F., Williams, D.A., and Clauw, D.J. (2004). Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50, 613–623.

    PubMed  Google Scholar 

  • Goadsby, P.J., Holland, P.R., Martins-Oliveira, M., Hoffmann, J., Schankin, C., and Akerman, S. (2017). Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97, 553–622.

    PubMed  PubMed Central  Google Scholar 

  • Goldstein, D.J., Lu, Y., Detke, M.J., Lee, T.C., and Iyengar, S. (2005). Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 116, 109–118.

    CAS  PubMed  Google Scholar 

  • Gracely, R.H., Petzke, F., Wolf, J.M., and Clauw, D.J. (2002). Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 46, 1333–1343.

    PubMed  Google Scholar 

  • Gustin, S.M., Peck, C.C., Cheney, L.B., Macey, P.M., Murray, G.M., and Henderson, L.A. (2012). Pain and plasticity: Is chronic pain always associated with somatosensory cortex activity and reorganization? J Neurosci 32, 14874–14884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustin, S.M., Peck, C.C., Wilcox, S.L., Nash, P.G., Murray, G.M., and Henderson, L.A. (2011). Different pain, different brain: Thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci 31, 5956–5964.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hart, L.G., Deyo, R.A., and Cherkin, D.C. (1995). Physician office visits for low back pain. Spine 20, 11–19.

    CAS  PubMed  Google Scholar 

  • Hemington, K.S., Wu, Q., Kucyi, A., Inman, R.D., and Davis, K.D. (2016). Abnormal cross-network functional connectivity in chronic pain and its association with clinical symptoms. Brain Struct Funct 221, 4203–4219.

    CAS  PubMed  Google Scholar 

  • Henderson, L.A., Peck, C.C., Petersen, E.T., Rae, C.D., Youssef, A.M., Reeves, J.M., Wilcox, S.L., Akhter, R., Murray, G.M., and Gustin, S.M. (2013). Chronic pain: lost inhibition? J Neurosci 33, 7574–7582.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiramatsu, T., Nakanishi, K., Yoshimura, S., Yoshino, A., Adachi, N., Okamoto, Y., Yamawaki, S., and Ochi, M. (2014). The dorsolateral prefrontal network is involved in pain perception in knee osteoarthritis patients. Neurosci Lett 581, 109–114.

    CAS  PubMed  Google Scholar 

  • Hodkinson, D.J., Wilcox, S.L., Veggeberg, R., Noseda, R., Burstein, R., Borsook, D., and Becerra, L. (2016). Increased amplitude of thalamocortical low-frequency oscillations in patients with migraine. J Neurosci 36, 8026–8036.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, J., and May, A. (2018). Diagnosis, pathophysiology, and management of cluster headache. Lancet Neurol 17, 75–83.

    PubMed  Google Scholar 

  • Hougaard, A., Amin, F.M., Larsson, H.B.W., Rostrup, E., and Ashina, M. (2017). Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Hum Brain Mapp 38, 2635–2642.

    PubMed  PubMed Central  Google Scholar 

  • Hu, L., and Iannetti, G.D. (2016). Painful issues in pain prediction. Trends Neurosci 39, 212–220.

    CAS  PubMed  Google Scholar 

  • Huang, G., Xiao, P., Hung, Y.S., Iannetti, G.D., Zhang, Z.G., and Hu, L. (2013). A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. NeuroImage 81, 283–293.

    CAS  PubMed  Google Scholar 

  • Hubbard, C.S., Khan, S.A., Keaser, M.L., Mathur, V.A., Goyal, M., and Seminowicz, D.A. (2014). Altered brain structure and function correlate with disease severity and pain catastrophizing in migraine patients. eNeuro 1, ENEURO.0006–14.2014.

  • Hui, K.K.S., Liu, J., Makris, N., Gollub, R.L., Chen, A.J.W. I. Moore, C., Kennedy, D.N., Rosen, B.R., and Kwong, K.K. (2000). Acupuncture modulates the limbic system and subcortical gray structures of the human brain: Evidence from fMRI studies in normal subjects. Hum Brain Mapp 9, 13–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., et al. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage 80, 360–378.

    PubMed  Google Scholar 

  • Ichesco, E., Puiu, T., Hampson, J.P., Kairys, A.E., Clauw, D.J., Harte, S.E., Peltier, S.J., Harris, R.E., and Schmidt-Wilcke, T. (2016). Altered fMRI resting-state connectivity in individuals with fibromyalgia on acute pain stimulation. Eur J Pain 20, 1079–1089.

    CAS  PubMed  Google Scholar 

  • Jensen, K.B., Kosek, E., Petzke, F., Carville, S., Fransson, P., Marcus, H., Williams, S.C.R., Choy, E., Giesecke, T., Mainguy, Y., et al. (2009). Evidence of dysfunctional pain inhibition in Fibromyalgia reflected in rACC during provoked pain. Pain 144, 95–100.

    PubMed  Google Scholar 

  • Jensen, K.B., Srinivasan, P., Spaeth, R., Tan, Y., Kosek, E., Petzke, F., Carville, S., Fransson, P., Marcus, H., Williams, S.C.R., et al. (2013). Overlapping structural and functional brain changes in patients with long-term exposure to fibromyalgia pain. Arthritis Rheum 65, 3293–3303.

    PubMed  PubMed Central  Google Scholar 

  • Jensen, M.P., Day, M.A., and Miro, J. (2014). Neuromodulatory treatments for chronic pain: Efficacy and mechanisms. Nat Rev Neurol 10, 167–178.

    PubMed  PubMed Central  Google Scholar 

  • Jones, C.K., Peters, S.C., and Shannon, H.E. (2005). Efficacy ofduloxetine, a potent and balanced serotonergic and noradrenergic reuptake inhibitor, in inflammatory and acute pain models in rodents. J Pharmacol Exp Ther 312, 726–732.

    CAS  PubMed  Google Scholar 

  • Kim, H., Kim, J., Loggia, M.L., Cahalan, C., Garcia, R.G., Vangel, M.G., Wasan, A.D., Edwards, R.R., and Napadow, V. (2015). Fibromyalgia is characterized by altered frontal and cerebellar structural covariance brain networks. NeuroImage Clin 7, 667–677.

    PubMed  PubMed Central  Google Scholar 

  • Kim, H., Mawla, I., Lee, J., Gerber, J., Walker, K., Kim, J., Ortiz, A., Chan, S.T., Loggia, M.L., Wasan, A.D., et al. (2020a). Reduced tactile acuity in chronic low back pain is linked with structural neuroplasticity in primary somatosensory cortex and is modulated by acupuncture therapy. Neurolmage 217, 116899.

    Google Scholar 

  • Kim, M., Mawla, I., Albrecht, D.S., Admon, R., Torrado-Carvajal, A., Bergan, C., Protsenko, E., Kumar, P., Edwards, R.R., Saha, A., et al. (2020b). Striatal hypofunction as a neural correlate ofmood alterations in chronic pain patients. NeuroImage 211, 116656.

    PubMed  Google Scholar 

  • Kong, J., Kaptchuk, T.J., Polich, G., Kirsch, I., Vangel, M., Zyloney, C., Rosen, B., and Gollub, R.L. (2009). An fMRI study on the interaction and dissociation between expectation of pain relief and acupuncture treatment. NeuroImage 47, 1066–1076.

    PubMed  Google Scholar 

  • Kong, J., Spaeth, B., Wey, H.Y., Cheetham, A., Cook, A.H., Jensen, K., Tan, Y., Liu, H., Wang, D., Loggia, M.L., et al. (2013). S1 is associated with chronic low back pain: a functional and structural MRI study. Mol Pain 9, 43.

    PubMed  PubMed Central  Google Scholar 

  • Kregel, J., Meeus, M., Malfliet, A., Dolphens, M., Danneels, L., Nijs, J., and Cagnie, B. (2015). Structural and functional brain abnormalities in chronic low back pain: A systematic review. Semin Arthritis Rheum 45, 229–237.

    PubMed  Google Scholar 

  • Kuchinad, A., Schweinhardt, P., Seminowicz, D.A., Wood, P.B., Chizh, B. A., and Bushnell, M.C. (2007). Accelerated brain gray matter loss in fibromyalgia patients: Premature aging of the brain? J Neurosci 27, 4004–4007.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kucyi, A., and Davis, K.D. (2014). Dynamic functional connectivity of the default mode network tracks daydreaming. NeuroImage 100, 471–480.

    PubMed  Google Scholar 

  • Kutch, J.J., Labus, J.S., Harris, R.E., Martucci, K.T., Farmer, M.A., Fenske, S., Fling, C., Ichesco, E., Peltier, S., Petre, B., et al. (2017). Resting-state functional connectivity predicts longitudinal pain symptom change in urologic chronic pelvic pain syndrome. Pain 158, 1069–1082.

    PubMed  PubMed Central  Google Scholar 

  • Lee, J., Mawla, I., Kim, J., Loggia, M.L., Ortiz, A., Jung, C., Chan, S.T., Gerber, J., Schmithorst, V.J., Edwards, R.R., et al. (2019). Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain 160, 550–560.

    PubMed  PubMed Central  Google Scholar 

  • Lefaucheur, J.P., Hatem, S., Nineb, A., Menard-Lefaucheur, I., Wendling, S., Keravel, Y., and Nguyen, J.P. (2006). Somatotopic organization of the analgesic effects of motor cortex rTMS in neuropathic pain. Neurology 67, 1998–2004.

    CAS  PubMed  Google Scholar 

  • Legrain, V., Iannetti, G.D., Plaghki, L., and Mouraux, A. (2011). The pain matrix reloaded. Prog Neurobiol 93, 111–124.

    PubMed  Google Scholar 

  • Leung, A., Donohue, M., Xu, R., Lee, R., Lefaucheur, J.P., Khedr, E.M., Saitoh, Y., André-Obadia, N., Rollnik, J., Wallace, M., et al. (2009). rTMS for suppressing neuropathic pain: a meta-analysis. J Pain 10, 1205–1216.

    PubMed  Google Scholar 

  • Li, K., Zhang, Y., Ning, Y., Zhang, H., Liu, H., Fu, C., Ren, Y., and Zou, Y. (2015). The effects of acupuncture treatment on the right frontoparietal network in migraine without aura patients. J Headache Pain 16, 518.

    PubMed  Google Scholar 

  • Li, Z., Liu, M., Lan, L., Zeng, F., Makris, N., Liang, Y., Guo, T., Wu, F., Gao, Y., Dong, M., et al. (2016). Altered periaqueductal gray resting state functional connectivity in migraine and the modulation effect of treatment. Sci Rep 6, 20298.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Lan, L., Zeng, F., Makris, N., Hwang, J., Guo, T., Wu, F., Gao, Y., Dong, M., Liu, M., et al. (2017a). The altered right frontoparietal network functional connectivity in migraine and the modulation effect of treatment. Cephalalgia 37, 161–176.

    PubMed  Google Scholar 

  • Li, Z., Zeng, F., Yin, T., Lan, L., Makris, N., Jorgenson, K., Guo, T., Wu, F., Gao, Y., Dong, M., et al. (2017b). Acupuncture modulates the abnormal brainstem activity in migraine without aura patients. NeuroImage Clin 15, 367–375.

    PubMed  PubMed Central  Google Scholar 

  • Liu, H.Y., Chou, K.H., and Chen, W.T. (2018). Migraine and the hippocampus. Curr Pain Headache Rep 22, 13.

    PubMed  Google Scholar 

  • Liu, J., Chen, L., Tu, Y., Chen, X., Hu, K., Tu, Y., Lin, M., Xie, G., Chen, S., Huang, J., et al. (2019). Different exercise modalities relieve pain syndrome in patients with knee osteoarthritis and modulate the dorsolateral prefrontal cortex: A multiple mode MRI study. Brain Behav Immun 82, 253–263.

    PubMed  Google Scholar 

  • Liu, J., Mu, J., Chen, T., Zhang, M., and Tian, J. (2019). White matter tract microstructure of the mPFC-amygdala predicts interindividual differences in placebo response related to treatment in migraine patients. Hum Brain Mapp 40, 284–292.

    PubMed  Google Scholar 

  • Loggia, M.L., Berna, C., Kim, J., Cahalan, C.M., Gollub, R.L., Wasan, A. D., Harris, R.E., Edwards, R.R., and Napadow, V. (2014). Disrupted brain circuitry for pain-related reward/punishment in fibromyalgia. Arthritis Rheumatol 66, 203–212.

    PubMed  PubMed Central  Google Scholar 

  • Loggia, M.L., Kim, J., Gollub, R.L., Vangel, M.G., Kirsch, I., Kong, J., Wasan, A.D., and Napadow, V. (2013). Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain 154, 24–33.

    PubMed  Google Scholar 

  • López-Solà, M., Pujol, J., Hernández-Ribas, R., Harrison, B.J., Contreras-Rodríguez, O., Soriano-Mas, C., Deus, J., Ortiz, H., Menchön, J.M., Vallejo, J., et al. (2010). Effects of duloxetine treatment on brain response to painful stimulation in major depressive disorder. Neuropsychopharmacology 35, 2305–2317.

    PubMed  PubMed Central  Google Scholar 

  • López-Solà, M., Woo, C.W., Pujol, J., Deus, J., Harrison, B.J., Monfort, J., and Wager, T.D. (2017). Towards a neurophysiological signature for fibromyalgia. Pain 158, 34–47.

    PubMed  PubMed Central  Google Scholar 

  • Lötsch, J., and Ultsch, A. (2018). Machine learning in pain research. Pain 159, 623–630.

    PubMed  Google Scholar 

  • Maleki, N., Linnman, C., Brawn, J., Burstein, R., Becerra, L., and Borsook, D. (2012). Her versus his migraine: multiple sex differences in brain function and structure. Brain 135, 2546–2559.

    PubMed  PubMed Central  Google Scholar 

  • Mansour, A.R., Baliki, M.N., Huang, L., Torbey, S., Herrmann, K.M., Schnitzer, T.J., and Apkarian, V.A. (2013). Brain white matter structural properties predict transition to chronic pain. Pain 154, 2160–2168.

    PubMed  PubMed Central  Google Scholar 

  • Mao, C.P., and Yang, H.J. (2015). Smaller amygdala volumes in patients with chronic low back pain compared with healthy control individuals. J Pain 16, 1366–1376.

    PubMed  Google Scholar 

  • Mao, C.P., Zhang, Q.L., Bao, F.X., Liao, X., Yang, X.L., and Zhang, M. (2014). Decreased activation of cingulo-frontal-parietal cognitive/attention network during an attention-demanding task in patients with chronic low back pain. Neuroradiology 56, 903–912.

    PubMed  Google Scholar 

  • Mao, J. (2012). Current challenges in translational pain research. Trends Pharmacol Sci 33, 568–573.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marlow, N.M., Bonilha, H.S., and Short, E.B. (2013). Efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation for treating fibromyalgia syndrome: a systematic review. Pain Pract 13, 131–145.

    PubMed  Google Scholar 

  • Martucci, K.T., Borg, N., MacNiven, K.H., Knutson, B., and Mackey, S.C. (2018). Altered prefrontal correlates of monetary anticipation and outcome in chronic pain. Pain 159, 1494–1507.

    PubMed  PubMed Central  Google Scholar 

  • Marusak, H.A., Calhoun, V.D., Brown, S., Crespo, L.M., Sala-Hamrick, K., Gotlib, I.H., and Thomason, M.E. (2017). Dynamic functional connectivity of neurocognitive networks in children. Hum Brain Mapp 38, 97–108.

    PubMed  Google Scholar 

  • May, A., Ashburner, J., Büchel, C., McGonigle, D.J., Friston, K.J., Frackowiak, R.S.J., and Goadsby, P.J. (1999). Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med 5, 836–838.

    CAS  PubMed  Google Scholar 

  • May, A., Bahra, A., Büchel, C., Frackowiak, R.S., and Goadsby, P.J. (1998). Hypothalamic activation in cluster headache attacks. Lancet 352, 275–278.

    CAS  PubMed  Google Scholar 

  • Mehnert, J., and May, A. (2019). Functional and structural alterations in the migraine cerebellum. J Cereb Blood Flow Metab 39, 730–739.

    PubMed  Google Scholar 

  • Messina, R., Filippi, M., and Goadsby, P.J. (2018). Recent advances in headache neuroimaging. Curr Opin Neurol 31, 379–385.

    PubMed  Google Scholar 

  • Mhalla, A., Baudic, S., de Andrade, D.C., Gautron, M., Perrot, S., Teixeira, M.J., Attal, N., and Bouhassira, D. (2011). Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia. Pain 152, 1478–1485.

    PubMed  Google Scholar 

  • Moayedi, M., Weissman-Fogel, I., Crawley, A.P., Goldberg, M.B., Freeman, B.V., Tenenbaum, H.C., and Davis, K.D. (2011). Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. NeuroImage 55, 277–286.

    PubMed  Google Scholar 

  • Moayedi, M., Weissman-Fogel, I., Salomons, T.V., Crawley, A.P., Goldberg, M.B., Freeman, B.V., Tenenbaum, H.C., and Davis, K.D. (2012). White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain 153, 1467–1477.

    PubMed  Google Scholar 

  • Moisset, X., and Bouhassira, D. (2007). Brain imaging of neuropathic pain. NeuroImage 37, S80–S88.

    PubMed  Google Scholar 

  • Mori, F., Codecà, C., Kusayanagi, H., Monteleone, F., Buttari, F., Fiore, S., Bernardi, G., Koch, G., and Centonze, D. (2010). Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J Pain 11, 436–442.

    PubMed  Google Scholar 

  • Mulleners, W.M., Chronicle, E.P., Palmer, J.E., Koehler, P.J., and Vredeveld, J.W. (2001). Visual cortex excitability in migraine with and without aura. Headache 41, 565–572.

    CAS  PubMed  Google Scholar 

  • Napadow, V., Kettner, N., Liu, J., Li, M., Kwong, K.K., Vangel, M., Makris, N., Audette, J., and Hui, K.K.S. (2007). Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130, 254–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Napadow, V., Kim, J., Clauw, D.J., and Harris, R.E. (2012). Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum 64, 2398–2403.

    PubMed  PubMed Central  Google Scholar 

  • Napadow, V., LaCount, L., Park, K., As-Sanie, S., Clauw, D.J., and Harris, R.E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62, 2545–2555.

    PubMed  PubMed Central  Google Scholar 

  • Napadow, V., Makris, N., Liu, J., Kettner, N.W., Kwong, K.K., and Hui, K. K.S. (2005). Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp 24, 193–205.

    PubMed  Google Scholar 

  • Niddam, D.M., Lai, K.L., Fuh, J.L., Chuang, C.Y.N., Chen, W.T., and Wang, S.J. (2016). Reduced functional connectivity between salience and visual networks in migraine with aura. Cephalalgia 36, 53–66.

    PubMed  Google Scholar 

  • Niesters, M., Khalili-Mahani, N., Martini, C., Aarts, L., van Gerven, J., van Buchem, M.A., Dahan, A., and Rombouts, S. (2012). Effect of subanesthetic ketamine on intrinsic functional brain connectivity. Anesthesiology 117, 868–877.

    CAS  PubMed  Google Scholar 

  • Niesters, M., Martini, C., and Dahan, A. (2014). Ketamine for chronic pain: Risks and benefits. Br J Clin Pharmacol 77, 357–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell, N.E., Wand, B.M., Marston, L., Spencer, S., and DeSouza, L.H. (2010). Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 8, CD008208.

    Google Scholar 

  • Obermann, M., Rodriguez-Raecke, R., Naegel, S., Holle, D., Mueller, D., Yoon, M.S., Theysohn, N., Blex, S., Diener, H.C., and Katsarava, Z. (2013). Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. NeuroImage 74, 352–358.

    PubMed  Google Scholar 

  • Parks, E.L., Gehal, P.Y., Balikil, M.N., Katzl, J., Schnitzerl, T.J., and Apkarianl, A.V. (2011). Brain activity for chronic knee osteoarthritis: Dissociating evoked pain from spontaneous pain. Eur J Pain 15, 843.e1–843.e14.

    Google Scholar 

  • Plow, E.B., Pascual-Leone, A., and Machado, A. (2012). Brain stimulation in the treatment of chronic neuropathic and non-cancerous pain. J Pain 13, 411–424.

    PubMed  PubMed Central  Google Scholar 

  • Pujol, J., López-Solà, M., Ortiz, H., Vilanova, J.C., Harrison, B.J., Yücel, M., Soriano-Mas, C., Cardoner, N., and Deus, J. (2009). Mapping brain response to pain in fibromyalgia patients using temporal analysis of fMRI. PLoS ONE 4, 0005224.

    Google Scholar 

  • Robinson, M.E., O’Shea, A.M., Craggs, J.G., Price, D.D., Letzen, J.E., and Staud, R. (2015). Comparison of machine classification algorithms for fibromyalgia: Neuroimages versus self-report. J Pain 16, 472–477.

    PubMed  PubMed Central  Google Scholar 

  • Rogachov, A., Bhatia, A., Cheng, J.C., Bosma, R.L., Kim, J.A., Osborne, N.R., Hemington, K.S., Venkatraghavan, L., and Davis, K.D. (2019). Plasticity in the dynamic pain connectome associated with ketamine-induced neuropathic pain relief. Pain 160, 1670–1679.

    CAS  PubMed  Google Scholar 

  • Rogers, R., Wise, R.G., Painter, D.J., Longe, S.E., and Tracey, I. (2004). An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology 100, 292–301.

    CAS  PubMed  Google Scholar 

  • Rosazza, C., and Minati, L. (2011). Resting-state brain networks: Literature review and clinical applications. Neurol Sci 32, 773–785.

    PubMed  Google Scholar 

  • Schulte, L.H., Allers, A., and May, A. (2017). Hypothalamus as a mediator of chronic migraine. Neurology 88, 2011–2016.

    PubMed  Google Scholar 

  • Schulte, L.H., and May, A. (2016). The migraine generator revisited: Continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 139, 1987–1993.

    PubMed  Google Scholar 

  • Schwedt, T.J. (2013). Multisensory integration in migraine. Curr Opin Neurol 26, 248–253.

    PubMed  PubMed Central  Google Scholar 

  • Schwedt, T.J., Chiang, C.C., Chong, C.D., and Dodick, D.W. (2015). Functional MRI of migraine. Lancet Neurol 14, 81–91.

    PubMed  Google Scholar 

  • Schwedt, T.J., Chong, C.D., Peplinski, J., Ross, K., and Berisha, V. (2017). Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure. J Headache Pain 18, 10–1186.

    Google Scholar 

  • Skljarevski, V., Ossanna, M., Liu-Seifert, H., Zhang, Q., Chappell, A., Iyengar, S., Detke, M., and Backonja, M. (2009). A double-blind, randomized trial of duloxetine versus placebo in the management of chronic low back pain. Eur J Neurol 16, 1041–1048.

    CAS  PubMed  Google Scholar 

  • Skljarevski, V., Zhang, S., Desaiah, D., Alaka, K.J., Palacios, S., Miazgowski, T., and Patrick, K. (2010). Duloxetine versus placebo in patients with chronic low back pain: A 12-week, fixed-dose, randomized, double-blind trial. J Pain 11, 1282–1290.

    CAS  PubMed  Google Scholar 

  • Stagg, C.J., O’Shea, J., Kincses, Z.T., Woolrich, M., Matthews, P.M., and Johansen-Berg, H. (2009). Modulation of movement-associated cortical activation by transcranial direct current stimulation. Eur J Neurosci 30, 1412–1423.

    CAS  PubMed  Google Scholar 

  • Stovner, L.J., Nichols, E., Steiner, T.J., Abd-Allah, F., Abdelalim, A., Al-Raddadi, R.M., Ansha, M.G., Barac, A., Bensenor, I.M., Doan, L.P., et al. (2018). Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17, 954–976.

    Google Scholar 

  • Su, Q., Song, Y., Zhao, R., and Liang, M. (2019). A review on the ongoing quest for a pain signature in the human brain. Brain Sci Adv 5, 274287.

    Google Scholar 

  • Symms, M., Jäger, H.R., Schmierer, K., and Yousry, T.A. (2004). A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75, 1235–1244.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tessitore, A., Russo, A., Giordano, A., Conte, F., Corbo, D., De Stefano, M., Cirillo, S., Cirillo, M., Esposito, F., and Tedeschi, G. (2013). Disrupted default mode network connectivity in migraine without aura. J Headache Pain 14, 89.

    PubMed  PubMed Central  Google Scholar 

  • Tétreault, P., Mansour, A., Vachon-Presseau, E., Schnitzer, T.J., Apkarian, A.V., and Baliki, M.N. (2016). Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biol 14, e1002570.

    PubMed  PubMed Central  Google Scholar 

  • Tu, Y., Fu, Z., Zeng, F., Maleki, N., Lan, L., Li, Z., Park, J., Wilson, G., Gao, Y., Liu, M., et al. (2019a). Abnormal thalamocortical network dynamics in migraine. Neurology 92, e2706–e2716.

    PubMed  PubMed Central  Google Scholar 

  • Tu, Y., Jung, M., Gollub, R.L., Napadow, V., Gerber, J., Ortiz, A., Lang, C., Mawla, I., Shen, W., Chan, S.T., et al. (2019b). Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain. Pain 160, 1308–1318.

    PubMed  PubMed Central  Google Scholar 

  • Tu, Y., Ortiz, A., Gollub, R.L., Cao, J., Gerber, J., Lang, C., Park, J., Wilson, G., Shen, W., Chan, S.T., et al. (2019c). Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain. NeuroImage Clin 23, 101885.

    PubMed  PubMed Central  Google Scholar 

  • Tu, Y., Fu, Z., Mao, C., Falahpour, M., Gollub, R.L., Park, J., Wilson, G., Napadow, V., Gerber, J., Chan, S.T., et al. (2020a). Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nat Commun 11, 3948.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu, Y., Zeng, F., Lan, L., Li, Z., Maleki, N., Liu, B., Chen, J., Wang, C., Park, J., Lang, C., et al. (2020b). An fMRI-based neural marker for migraine without aura. Neurology 94, e741–e751.

    PubMed  PubMed Central  Google Scholar 

  • Tzabazis, A., Aparici, C.M., Rowbotham, M.C., Schneider, M.B., Etkin, A., and Yeomans, D.C. (2013). Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients. Mol Pain 9, 33.

    PubMed  PubMed Central  Google Scholar 

  • Ung, H., Brown, J.E., Johnson, K.A., Younger, J., Hush, J., and Mackey, S. (2014). Multivariate classification of structural MRI data detects chronic low back pain. Cereb Cortex 24, 1037–1044.

    PubMed  Google Scholar 

  • van der Miesen, M.M., Lindquist, M.A., and Wager, T.D. (2019). Neuroimaging-based biomarkers for pain. Pain Rep 4, e751.

    PubMed  PubMed Central  Google Scholar 

  • Venkatakrishnan, A., and Sandrini, M. (2012). Combining transcranial direct current stimulation and neuroimaging: Novel insights in understanding neuroplasticity. J Neurophysiol 107, 1–4.

    PubMed  Google Scholar 

  • Vickers, A.J., Cronin, A.M., Maschino, A.C., Lewith, G., MacPherson, H., Victor, N., Foster, N.E., Sherman, K.J., Witt, C.M., and Linde, K. (2012). Acupuncture for chronic pain: Individual patient data meta-analysis. Arch Intern Med 172, 1444–1453.

    PubMed  PubMed Central  Google Scholar 

  • Vickers, A.J., Vertosick, E.A., Lewith, G., MacPherson, H., Foster, N.E., Sherman, K.J., Irnich, D., Witt, C.M., and Linde, K. (2018). Acupuncture for chronic pain: update of an individual patient data meta-analysis. J Pain 19, 455–474.

    PubMed  Google Scholar 

  • von Deneen, K.M., Zhao, L., and Liu, J. (2019). Individual differences of maladaptive brain changes in migraine and their relationship with differential effectiveness of treatments. Brain Sci Adv 5, 239–255.

    Google Scholar 

  • Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J.A., Abdalla, S., Aboyans, V., et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196.

    PubMed  PubMed Central  Google Scholar 

  • Wager, T.D., Atlas, L.Y., Lindquist, M.A., Roy, M., Woo, C.W., and Kross, E. (2013). An fMRI-based neurologic signature of physical pain. N Engl J Med 368, 1388–1397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman-Fogel, I., Moayedi, M., Tenenbaum, H.C., Goldberg, M.B., Freeman, B.V., and Davis, K.D. (2011). Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain 152, 384–396.

    CAS  PubMed  Google Scholar 

  • Woo, C.W., Chang, L.J., Lindquist, M.A., and Wager, T.D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nat Neurosci 20, 365–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, A., Dong, W., Liu, S., Cheung, J.P.Y., Kwan, K.Y.H., Zeng, X., Zhang, K., Sun, Z., Wang, X., Cheung, K.M.C., et al. (2019). The prevalence and years lived with disability caused by low back pain in China, 1990 to 2016. Pain 160, 237–245.

    PubMed  Google Scholar 

  • Wu, D., Li, X., and Jiang, T. (2020). Reconstruction of behavior-relevant individual brain activity: an individualized fMRI study. Sci China Life Sci 63, 410–418.

    PubMed  Google Scholar 

  • Xue, T., Yuan, K., Zhao, L., Yu, D., Zhao, L., Dong, T., Cheng, P., von Deneen, K.M., Qin, W., and Tian, J. (2012). Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS ONE 7, e52927.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., and Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8, 665–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, S., Li, W., Shen, W., Edwards, R.R., Gollub, R.L., Wilson, G., Park, J., Ortiz, A., Cao, J., Gerber, J., et al. (2020a). Impaired mesocorticolimbic connectivity underlies increased pain sensitivity in chronic low back pain. NeuroImage 218, 116969.

    PubMed  Google Scholar 

  • Yu, S., Ortiz, A., Gollub, R.L., Wilson, G., Gerber, J., Park, J., Huang, Y., Shen, W., Chan, S.T., Wasan, A.D., et al. (2020b). Acupuncture treatment modulates the connectivity of key regions of the descending pain modulation and reward systems in patients with chronic low back pain. J Clin Med 9, 1719.

    PubMed Central  Google Scholar 

  • Zang, Y.F., He, Y., Zhu, C.Z., Cao, Q.J., Sui, M.Q., Liang, M., Tian, L.X., Jiang, T.Z., and Wang, Y.F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29, 83–91.

    PubMed  Google Scholar 

  • Zhang, J., Su, J., Wang, M., Zhao, Y., Zhang, Q.T., Yao, Q., Lu, H., Zhang, H., Li, G.F., Wu, Y.L., et al. (2017). The sensorimotor network dysfunction in migraineurs without aura: a resting-state fMRI study. J Neurol 264, 654–663.

    PubMed  Google Scholar 

  • Zhang, B., Jung, M., Tu, Y., Gollub, R., Lang, C., Ortiz, A., Park, J., Wilson, G., Gerber, J., Mawla, I., et al. (2019a). Identifying brain regions associated with the neuropathology of chronic low back pain: a resting-state amplitude oflow-frequency fluctuation study. Br J Anaesth 123, e303–e311.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Zhou, L., Ren, Q., Mokhtari, T., Wan, L., Zhou, X., and Hu, L. (2019b). Evaluating cortical alterations in patients with chronic back pain using neuroimaging techniques: recent advances and perspectives. Front Psychol 10, 2527.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Chen, J., Li, Y., Sun, X., Chang, X., Zheng, H., Gong, B., Huang, Y., Yang, M., Wu, X., et al. (2017). The long-term effect of acupuncture for migraine prophylaxis. JAMA Intern Med 177, 508.

    PubMed  Google Scholar 

  • Zou, Q.H., Zhu, C.Z., Yang, Y., Zuo, X.N., Long, X.Y., Cao, Q.J., Wang, Y. F., and Zang, Y.F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J Neurosci Methods 172, 137–141.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32071061, 31822025, 31671141, 31800926), and the Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences (E0CX521003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Hu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Cao, J., Bi, Y. et al. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers. Sci. China Life Sci. 64, 879–896 (2021). https://doi.org/10.1007/s11427-020-1822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1822-4

Keywords

Navigation