Skip to main content
Log in

Divalent anion intercalation and etching-hydrolysis strategies to construct ultra-stable electrodes for seawater splitting

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing stable electrodes for seawater splitting remains a great challenge due to the detachment of catalysts at a large operating current and severe anode corrosion caused by chlorine. Herein, divalent anion intercalation and etching-hydrolysis strategies are deployed to synthesize the ultra-stable anode, dendritic Fe(OH)3 grown on Ni(SO4)0.3(OH)1.4-Ni(OH)2. Experimental results reveal that the anode exhibits good activity and excellent stability in alkaline simulated seawater. After 500 h, the current density operated at 1.72 V remains 99.5%, about 210 mA cm−2. The outstanding stability originates from the etching-hydrolysis strategy, which strengthens the interaction between the catalyst and the carrier and retards thus the detachment of catalysts at a large current density. Besides, theoretical simulations confirm that the intercalated divalent anions, such as SO 2−4 and CO 2−3 , can weaken the adsorption strength of chlorine on the surface of catalysts and hinder the coupling and hybridization between chlorine and nickel, which slows down the anode corrosion and improves catalytic stability. Furthermore, the two-electrode system shows the remarkable 95.1% energy efficiency at 2,000 A m−2 and outstanding stability in 6 mol L−1 KOH + seawater at 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresp S, Dionigi F, Klingenhof M, Strasser P. ACS Energy Lett, 2019, 4: 933–942

    Article  CAS  Google Scholar 

  2. Juodkazyté J, Šebeka B, Savickaja I, Petrulevičienė M, Butkutė S, Jasulaitienė V, Selskis A, Ramanauskas R. Int J Hydrogen Energy, 2019, 44: 5929–5939

    Article  Google Scholar 

  3. Li J, Liu Y, Chen H, Zhang Z, Zou X. Adv Funct Mater, 2021, 31: 2101820

    Article  CAS  Google Scholar 

  4. Jin H, Liu X, Vasileff A, Jiao Y, Zhao Y, Zheng Y, Qiao SZ. ACS Nano, 2018, 12: 12761–12769

    Article  PubMed  CAS  Google Scholar 

  5. Wang H, Cui M, Fu G, Zhang J, Ding X, Azaceta I, Bugnet M, Kepaptsoglou DM, Lazarov VK, de la Peña O’Shea VA, Oropeza FE, Zhang KHL. Sci China Chem, 2022, 65: 1885–1894

    Article  CAS  Google Scholar 

  6. Tong W, Forster M, Dionigi F, Dresp S, Erami RS, Strasser P, Cowan AJ, Farràs P. Nat Energy, 2021, 6: 935

    Article  ADS  Google Scholar 

  7. Kirk D, Ledas A. Int J Hydrogen Energy, 1982, 7: 925–932

    Article  ADS  CAS  Google Scholar 

  8. Bennett J. Int J Hydrogen Energy, 1980, 5: 401–408

    Article  CAS  Google Scholar 

  9. Wang C, Shang H, Jin L, Xu H, Du Y. Nanoscale, 2021, 13: 7897–7912

    Article  PubMed  CAS  Google Scholar 

  10. Ma T, Xu W, Li B, Chen X, Zhao J, Wan S, Jiang K, Zhang S, Wang Z, Tian Z, Lu Z, Chen L. Angew Chem Int Ed, 2021, 60: 22740–22744

    Article  CAS  Google Scholar 

  11. Zhong H, Wang J, Meng F, Zhang X. Angew Chem Int Ed, 2016, 55: 9937–9941

    Article  CAS  Google Scholar 

  12. Xie H, Zhao Z, Liu T, Wu Y, Lan C, Jiang W, Zhu L, Wang Y, Yang D, Shao Z. Nature, 2022, 612: 673–678

    Article  PubMed  ADS  CAS  Google Scholar 

  13. Shi H, Wang T, Liu J, Chen W, Li S, Liang J, Liu S, Liu X, Cai Z, Wang C, Su D, Huang Y, Elbaz L, Li Q. Nat Commun, 2023, 14: 3934

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  14. Yu H, Wan J, Goodsite M, Jin H. One Earth, 2023, 6: 267–277

    Article  ADS  Google Scholar 

  15. Kuang Y, Kenney MJ, Meng Y, Hung WH, Liu Y, Huang JE, Prasanna R, Li P, Li Y, Wang L, Lin MC, McGehee MD, Sun X, Dai H. Proc Natl Acad Sci USA, 2019, 116: 6624–6629

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  16. Khatun S, Hirani H, Roy P. J Mater Chem A, 2021, 9: 74–86

    Article  CAS  Google Scholar 

  17. Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. ChemSusChem, 2016, 9: 962–972

    Article  PubMed  CAS  Google Scholar 

  18. Zou X, Liu Y, Li GD, Wu Y, Liu DP, Li W, Li HW, Wang D, Zhang Y, Zou X. Adv Mater, 2017, 29: 1700404

    Article  Google Scholar 

  19. Zhu L, Lin H, Li Y, Liao F, Lifshitz Y, Sheng M, Lee ST, Shao M. Nat Commun, 2016, 7: 12272

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  20. Lee J, Jung H, Park YS, Kwon N, Woo S, Selvam NCS, Han GS, Jung HS, Yoo PJ, Choi SM, Han JW, Lim B. Appl Catal B-Environ, 2021, 294: 120246

    Article  CAS  Google Scholar 

  21. Qian G, Yu G, Lu J, Luo L, Wang T, Zhang C, Ku R, Yin S, Chen W, Mu S. J Mater Chem A, 2020, 8: 14545–14554

    Article  CAS  Google Scholar 

  22. Li Z, Wang K, Tan X, Liu X, Wang G, Xie G, Jiang L. Chem Eng J, 2021, 424: 130390

    Article  CAS  Google Scholar 

  23. Zhang X, Chen N, Wang Y, Wu G, Du X. Int J Hydrogen Energy, 2020, 45: 22921–22928

    Article  CAS  Google Scholar 

  24. Chen W, Wu B, Wang Y, Zhou W, Li Y, Liu T, Xie C, Xu L, Du S, Song M, Wang D, Liu Y, Li Y, Liu J, Zou Y, Chen R, Chen C, Zheng J, Li Y, Chen J, Wang S. Energy Environ Sci, 2021, 14: 6428–6440

    Article  CAS  Google Scholar 

  25. Hao P, Xin Y, Tian J, Li L, Xie J, Lei F, Tong L, Liu H, Tang B. Sci China Chem, 2020, 63: 1030–1039

    Article  CAS  Google Scholar 

  26. Lu J, Deng PJ, Chen A, Yang C, Zhu H, Liang HP. J Mater Chem A, 2023, 11: 2452–2459

    Article  CAS  Google Scholar 

  27. Dünnwald J, Otto A. Corrosion Sci, 1989, 29: 1167–1176

    Article  Google Scholar 

  28. Rubim JC. J Chem Soc Faraday Trans 1, 1989, 85: 4247–4258

    Article  CAS  Google Scholar 

  29. Rémazeilles C, Refait P. Corrosion Sci, 2007, 49: 844–857

    Article  Google Scholar 

  30. Liao H, Luo T, Tan P, Chen K, Lu L, Liu Y, Liu M, Pan J. Adv Funct Mater, 2021, 31: 2102772

    Article  CAS  Google Scholar 

  31. Louie MW, Bell AT. J Am Chem Soc, 2013, 135: 12329–12337

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Y, Su Y, Zhou X, Dai C, Keller AA. J Hazard Mater, 2013, 263: 685–693

    Article  PubMed  CAS  Google Scholar 

  33. Samide A, Tutunaru B, Negrila C, Prunaru I. Spectr Lett, 2012, 45: 55–64

    Article  ADS  CAS  Google Scholar 

  34. Li W, Li F, Zhao Y, Liu C, Li Y, Yang H, Fan K, Zhang P, Shan Y, Sun L. Sci China Chem, 2022, 65: 382–390

    Article  CAS  Google Scholar 

  35. Zhu Y, Wang X, Shi J, Gan L, Huang B, Tao L, Wang S. Sci China Chem, 2022, 65: 1445–1452

    Article  CAS  Google Scholar 

  36. Yang H, Gao S, Rao D, Zhang C, Zhou X, Yang S, Ye J, Yang S, Lai F, Yan X. Sci China Chem, 2021, 64: 101–108

    Article  ADS  CAS  Google Scholar 

  37. Chen H, Zou Y, Li J, Zhang K, Xia Y, Hui B, Yang D. Appl Catal B-Environ, 2021, 293: 120215

    Article  CAS  Google Scholar 

  38. Cui B, Hu Z, Liu C, Liu S, Chen F, Hu S, Zhang J, Zhou W, Deng Y, Qin Z, Wu Z, Chen Y, Cui L, Hu W. Nano Res, 2021, 14: 1149–1155

    Article  ADS  CAS  Google Scholar 

  39. Li Y, Wu X, Wang J, Wei H, Zhang S, Zhu S, Li Z, Wu S, Jiang H, Liang Y. Electrochim Acta, 2021, 390: 138833

    Article  CAS  Google Scholar 

  40. Yu L, Wu L, McElhenny B, Song S, Luo D, Zhang F, Yu Y, Chen S, Ren Z. Energy Environ Sci, 2020, 13: 3439–3446

    Article  CAS  Google Scholar 

  41. Yu L, Zhu Q, Song S, McElhenny B, Wang D, Wu C, Qin Z, Bao J, Yu Y, Chen S, Ren Z. Nat Commun, 2019, 10: 5106

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  42. Kang X, Yang F, Zhang Z, Liu H, Ge S, Hu S, Li S, Luo Y, Yu Q, Liu Z, Wang Q, Ren W, Sun C, Cheng HM, Liu B. Nat Commun, 2023, 14: 3607

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  43. Kloprogge JT, Wharton D, Hickey L, Frost RL. Am Miner, 2002, 87: 623–629

    Article  ADS  CAS  Google Scholar 

  44. Tomikawa K, Kanno H. J Phys Chem A, 1998, 102: 6082–6088

    Article  CAS  Google Scholar 

  45. Frost RL, Henry DA, Erickson K. J Raman Spectrosc, 2004, 35: 255–260

    Article  ADS  CAS  Google Scholar 

  46. Frost RL, Čejka J, Ayoko GA, Dickfos MJ. J Raman Spectrosc, 2008, 39: 374–379

    Article  ADS  CAS  Google Scholar 

  47. Li H, Ma J, Evans DG, Zhou T, Li F, Duan X. Chem Mater, 2006, 18: 4405–4414

    Article  CAS  Google Scholar 

  48. Zhang Y, Lim YV, Huang S, Pam ME, Wang Y, Ang LK, Shi Y, Yang HY. Small, 2018, 14: 1800898

    Article  Google Scholar 

  49. Debnath B, Parvin S, Dixit H, Bhattacharyya S. ChemSusChem, 2020, 13: 3875–3886

    Article  PubMed  CAS  Google Scholar 

  50. Wang Y, Yu W, Zhou B, Xiao W, Wang J, Wang X, Xu G, Li B, Li Z, Wu Z, Wang L. J Mater Chem A, 2022, 11: 1886–1893

    Article  Google Scholar 

  51. Chen H, Zhang S, Liu Q, Yu P, Luo J, Hu G, Liu X. InOrg Chem Commun, 2022, 146: 110170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported from the China Postdoctoral Science Foundation (2020M682250), the Natural Science Foundation of Shandong Province (ZR2022QB062, ZR2021MB070) and the DNL Cooperation Fund, CAS (DNL202010). Additionally, we also thank the Shanxi Supercomputing Center of China for its support with the calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Pu Liang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1761_MOESM1_ESM.pdf

Divalent anion intercalation and etching etching-hydrolysis strategies to construct ultra ultra-stable electrodes for seawater splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Liu, Y. & Liang, HP. Divalent anion intercalation and etching-hydrolysis strategies to construct ultra-stable electrodes for seawater splitting. Sci. China Chem. 67, 687–695 (2024). https://doi.org/10.1007/s11426-023-1761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1761-8

Navigation