Skip to main content
Log in

Vasculature-on-a-chip with stretchable sensor for recapitulating hemodynamics and electrochemical monitoring of endothelium

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Vascular endothelium can perceive fluid shear stress (FSS) and cyclic circumferential stretch (CCS) caused by the pulsatile blood flow, and translate the hemodynamics into biochemical signals to regulate vascular pathophysiology. However, existing methods provide little information about the real-time biochemical responses of endothelium when exposed to dynamic FSS and CCS. Herein, a vasculature-on-a-chip integrated with stretchable sensing is engineered for recapitulating the hemodynamic milieus and in-situ monitoring biochemical responses of endothelial monolayer. The integrated device is developed by sandwiching a robust stretchable electrode between an upper fluidic channel and a lower pneumatic channel. The fluidic and pneumatic channels enable the simultaneous recapitulation of both FSS and CCS, and the integrated sensor exhibits excellent cell-adhesive capacity and electrochemical sensing stability even after long-term hemodynamic exposure. These allow real-time monitoring of hemodynamic form- and duration-dependent endothelium responses, and further efficacy investigation about a recommended drug for COVID-19, demonstrating the great potential in vascular disease and drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hahn C, Schwartz MA. Nat Rev Mol Cell Biol, 2009, 10: 53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chiu JJ, Chien S. Physiol Rev, 2011, 91: 327–387

    Article  PubMed  Google Scholar 

  3. Davis MJ, Earley S, Li YS, Chien S. Physiol Rev, 2023, 103: 1247–1421

    Article  CAS  PubMed  Google Scholar 

  4. Charbonier FW, Zamani M, Huang NF. Adv Biosys, 2019, 3: 1800252

    Article  PubMed  Google Scholar 

  5. Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C. J Intern Med, 2006, 259: 351–363

    Article  CAS  PubMed  Google Scholar 

  6. Chien S. Am J Physiol-Heart Circulatory Physiol, 2007, 292: H1209–H1224

    Article  CAS  Google Scholar 

  7. Chatterjee S, Fisher AB. Antioxid Redox Signal, 2014, 20: 868–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bogorad MI, DeStefano J, Karlsson J, Wong AD, Gerecht S, Searson PC. Lab Chip, 2015, 15: 4242–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Virumbrales-Muñoz M, Ayuso JM, Gong MM, Humayun M, Livingston MK, Lugo-Cintrón KM, McMinn P, Álvarez-García YR, Beebe DJ. Chem Soc Rev, 2020, 49: 6402–6442

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim S, Kim W, Lim S, Jeon J. Bioengineering, 2017, 4: 8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Griffith CM, Huang SA, Cho C, Khare TM, Rich M, Lee G, Ligler FS, Diekman BO, Polacheck WJ. J Phys D-Appl Phys, 2020, 53: 224004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang B, Zheng WF, Zhang W, Jiang XY. Sci China Chem, 2013, 57: 356–364

    Article  Google Scholar 

  13. Zheng W, Huang R, Jiang B, Zhao Y, Zhang W, Jiang X. Small, 2016, 12: 2022–2034

    Article  CAS  PubMed  Google Scholar 

  14. Chen YY, Syed AM, MacMillan P, Rocheleau JV, Chan WCW. Adv Mater, 2020, 32: 1906274

    Article  CAS  Google Scholar 

  15. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE. Science, 2012, 337: 738–742

    Article  CAS  PubMed  Google Scholar 

  16. Estrada R, Giridharan GA, Nguyen MD, Prabhu SD, Sethu P. Biomicrofluidics, 2011, 5: 32006

    Article  PubMed  Google Scholar 

  17. Westein E, van der Meer AD, Kuijpers MJE, Frimat JP, van den Berg A, Heemskerk JWM. Proc Natl Acad Sci USA, 2013, 110: 1357–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kieninger J, Weltin A, Flamm H, Urban GA. Lab Chip, 2018, 18: 1274–1291

    Article  CAS  PubMed  Google Scholar 

  19. Aleman J, Kilic T, Mille LS, Shin SR, Zhang YS. Nat Protoc, 2021, 16: 2564–2593

    Article  CAS  PubMed  Google Scholar 

  20. Liu YL, Qin Y, Jin ZH, Hu XB, Chen MM, Liu R, Amatore C, Huang WH. Angew Chem Int Ed, 2017, 56: 9454–9458

    Article  CAS  Google Scholar 

  21. Zhou M, Jiang Y, Wang G, Wu W, Chen W, Yu P, Lin Y, Mao J, Mao L. Nat Commun, 2020, 11: 3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Huang W. Angew Chem Int Ed, 2021, 60: 2757–2767

    Article  CAS  Google Scholar 

  23. Fan W, Huang W, Liu Y. Chin J Chem, 2022, 41: 443–457

    Article  Google Scholar 

  24. Jin Z, Liu Y, Fan W, Huang W. Small, 2020, 16: 1903204

    Article  CAS  Google Scholar 

  25. Fan WT, Qin Y, Hu XB, Yan J, Wu WT, Liu YL, Huang WH. Anal Chem, 2020, 92: 15639–15646

    Article  CAS  PubMed  Google Scholar 

  26. Fan WT, Zhao Y, Wu WT, Qin Y, Yan J, Liu YL, Huang WH. Anal Chem, 2022, 94: 7425–7432

    Article  CAS  PubMed  Google Scholar 

  27. Sabaté del Río J, Henry OYF, Jolly P, Ingber DE. Nat Nanotechnol, 2019, 14: 1143–1149

    Article  PubMed  Google Scholar 

  28. Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Chem Rev, 2020, 120: 3852–3889

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Z, Pan M, Qiao C, Xiang L, Liu X, Yang W, Chen X, Zeng H. Adv Mater, 2023, 35: 2208824

    Article  CAS  Google Scholar 

  30. Belbachir K, Noreen R, Gouspillou G, Petibois C. Anal Bioanal Chem, 2009, 395: 829–837

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman BD, Grashoff C, Schwartz MA. Nature, 2011, 475: 316–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao S, Suciu A, Ziegler T, Moore Jr JE, Burki E, Meister JJ, Brunner HR. Arterioscler Thromb Vasc Biol, 1995, 15: 1781–1786

    Article  CAS  PubMed  Google Scholar 

  33. Brash JL. Sci China Chem, 2020, 63: 143–144

    Article  CAS  Google Scholar 

  34. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LCM, Wofovitz E. Prog Biophys Mol Biol, 2003, 81: 177–199

    Article  PubMed  Google Scholar 

  35. Touyz RM, Schiffrin EL. Histochem Cell Biol, 2004, 122: 339–352

    Article  CAS  PubMed  Google Scholar 

  36. Iskratsch T, Wolfenson H, Sheetz MP. Nat Rev Mol Cell Biol, 2014, 15: 825–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tachibana H, Washida K, Kowa H, Kanda F, Toda T. Am J Alzheimers Dis Other Demen, 2016, 31: 437–442

    Article  PubMed  Google Scholar 

  38. Kumar S, Bar-Lev L, Sharife H, Grunewald M, Mogilevsky M, Licht T, Goveia J, Taverna F, Paldor I, Carmeliet P, Keshet E. Angiogenesis, 2022, 25: 355–371

    Article  CAS  PubMed  Google Scholar 

  39. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. Nat Rev Immunol, 2020, 20: 389–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Lancet, 2020, 395: 1417–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Calabretta E, Moraleda JM, Iacobelli M, Jara R, Vlodavsky I, O’Gorman P, Pagliuca A, Mo C, Baron RM, Aghemo A, Soiffer R, Fareed J, Carlo-Stella C, Richardson P. Br J Haematol, 2021, 193: 43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. Cytokine Growth Factor Rev, 2020, 53: 25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye Q, Wang B, Mao J. J Infect, 2020, 80: 607–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu C, Chen X, Cai Y, Xia J’, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. JAMA Intern Med, 2020, 180: 934–943

    Article  CAS  PubMed  Google Scholar 

  45. Leaf DE, Gupta S, Wang W. New Engl J Med, 2021, 384: 86–87

    Article  CAS  PubMed  Google Scholar 

  46. Masiá M, Fernández-González M, García JA, Padilla S, García-Abellán J, Botella Á, Mascarell P, Agulló V, Gutiérrez F. eBioMedicine, 2022, 82: 104153

    Article  PubMed  PubMed Central  Google Scholar 

  47. Florescu S, Stanciu D, Zaharia M, et al. JAMA, 2023, 329: 39

    Article  Google Scholar 

  48. Kang S, Kishimoto T. Exp Mol Med, 2021, 53: 1116–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFA1104802) and the National Natural Science Foundation of China (22122408, 21721005, 22090051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Ling Liu or Wei-Hua Huang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1741_MOESM1_ESM.pdf

Vasculature-on-a-chip with stretchable sensor for recapitulating hemodynamics and electrochemical monitoring of endothelium

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, WT., Zhao, Y., Hong, F. et al. Vasculature-on-a-chip with stretchable sensor for recapitulating hemodynamics and electrochemical monitoring of endothelium. Sci. China Chem. 66, 3314–3322 (2023). https://doi.org/10.1007/s11426-023-1741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1741-6

Navigation