Skip to main content
Log in

High-efficiency organic solar cells enabled by an alcohol-washable solid additive

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The solvent additive strategy has been widely utilized to boost the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the residual solvent additive in the active layer tends to induce a gradual morphology degradation and further influences the long-term stability of OSCs. Here, a solid additive, 1,4-diiodobenzene (DIB), was introduced to fabricate efficient OSCs. We found that the treatment of DIB can lead to optimized morphology to form a bicontinuous network with intensified intermolecular packing in the donor and acceptor phases. Notably, DIB can be easily removed from the active layer via a simple alcohol washing process and no further post-thermal annealing is needed, which is desirable for large-scale manufacturing of OSCs. As a result, high efficiencies of 17.47% for PM6:Y6 and 18.13% (certified as 17.7%) for PM6:BTP-eC9 binary OSCs are achieved, which are among the highest efficiencies reported for binary OSCs thus far. Moreover, OSCs fabricated with DIB also exhibit superior stability compared with the as-cast and traditional solvent additive processed devices. Additionally, DIB was successfully applied in different active layers, manifesting its general applicability. This work provides a feasible approach to enhance both the efficiency and stability of OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    Article  CAS  Google Scholar 

  2. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    Article  CAS  Google Scholar 

  3. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  4. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  PubMed  Google Scholar 

  5. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  6. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  CAS  Google Scholar 

  7. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  8. Zhang M, Zhu L, Zhou G, Hao T, Qiu C, Zhao Z, Hu Q, Larson BW, Zhu H, Ma Z, Tang Z, Feng W, Zhang Y, Russell TP, Liu F. Nat Commun, 2021, 12: 309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  10. Lin Y, Firdaus Y, Isikgor FH, Nugraha MI, Yengel E, Harrison GT, Hallani R, El-Labban A, Faber H, Ma C, Zheng X, Subbiah A, Howells CT, Bakr OM, McCulloch I, Wolf SD, Tsetseris L, Anthopoulos TD. ACS Energy Lett, 2020, 5: 2935–2944

    Article  CAS  Google Scholar 

  11. Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Adv Mater, 2012, 24: 580–612

    Article  PubMed  Google Scholar 

  12. Guo J, Min J. Adv Energy Mater, 2018, 9: 1802521

    Article  Google Scholar 

  13. Zhang Y, Samuel IDW, Wang T, Lidzey DG. Adv Sci, 2018, 5: 1800434

    Article  Google Scholar 

  14. Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363–369

    Article  CAS  PubMed  Google Scholar 

  15. Xue R, Zhang J, Li Y, Li Y. Small, 2018, 14: 1801793

    Article  Google Scholar 

  16. Zhao F, Wang C, Zhan X. Adv Energy Mater, 2018, 8: 1703147

    Article  Google Scholar 

  17. Gurney RS, Lidzey DG, Wang T. Rep Prog Phys, 2019, 82: 036601

    Article  CAS  PubMed  Google Scholar 

  18. Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662–668

    Article  CAS  Google Scholar 

  19. Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353

    Article  Google Scholar 

  20. Xie Y, Yang F, Li Y, Uddin MA, Bi P, Fan B, Cai Y, Hao X, Woo HY, Li W, Liu F, Sun Y. Adv Mater, 2018, 30: 1803045

    Article  Google Scholar 

  21. Jiao X, Ye L, Ade H. Adv Energy Mater, 2017, 7: 1700084

    Article  Google Scholar 

  22. McDowell C, Abdelsamie M, Toney MF, Bazan GC. Adv Mater, 2018, 30: 1707114

    Article  Google Scholar 

  23. Manley EF, Strzalka J, Fauvell TJ, Marks TJ, Chen LX. Adv Energy Mater, 2018, 8: 1800611

    Article  Google Scholar 

  24. van Franeker JJ, Turbiez M, Li W, Wienk MM, Janssen RAJ. Nat Commun, 2015, 6: 6229

    Article  CAS  PubMed  Google Scholar 

  25. Kim Y, Yeom HR, Kim JY, Yang C. Energy Environ Sci, 2013, 6: 1909–1916

    Article  CAS  Google Scholar 

  26. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027

    Article  CAS  Google Scholar 

  27. Su MS, Kuo CY, Yuan MC, Jeng US, Su CJ, Wei KH. Adv Mater, 2011, 23: 3315–3319

    Article  CAS  PubMed  Google Scholar 

  28. Liao HC, Ho CC, Chang CY, Jao MH, Darling SB, Su WF. Mater Today, 2013, 16: 326–336

    Article  CAS  Google Scholar 

  29. Tremolet de Villers BJ, O’Hara KA, Ostrowski DP, Biddle PH, Shaheen SE, Chabinyc ML, Olson DC, Kopidakis N. Chem Mater, 2016, 28: 876–884

    Article  CAS  Google Scholar 

  30. Xie Y, Hu X, Yin J, Zhang L, Meng X, Xu G, Ai Q, Zhou W, Chen Y. ACS Appl Mater Interfaces, 2017, 9: 9918–9925

    Article  CAS  PubMed  Google Scholar 

  31. Cheng P, Zhan X. Chem Soc Rev, 2016, 45: 2544–2582

    Article  CAS  PubMed  Google Scholar 

  32. Lee S, Kong J, Lee K. Adv Energy Mater, 2016, 6: 1600970

    Article  Google Scholar 

  33. Yu R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, Li S, Hou J. Nat Commun, 2018, 9: 4645

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ye L, Cai Y, Li C, Zhu L, Xu J, Weng K, Zhang K, Huang M, Zeng M, Li T, Zhou E, Tan S, Hao X, Yi Y, Liu F, Wang Z, Zhan X, Sun Y. Energy Environ Sci, 2020, 13: 5117–5125

    Article  CAS  Google Scholar 

  35. Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234

    Article  CAS  Google Scholar 

  36. Gao K, Deng W, Xiao L, Hu Q, Kan Y, Chen X, Wang C, Huang F, Peng J, Wu H, Peng X, Cao Y, Russell TP, Liu F. Nano Energy, 2016, 30: 639–648

    Article  CAS  Google Scholar 

  37. Lv J, Tang H, Huang J, Yan C, Liu K, Yang Q, Hu D, Singh R, Lee J, Lu S, Li G, Kan Z. Energy Environ Sci, 2021, 14: 3044–3052

    Article  CAS  Google Scholar 

  38. Fu J, Chen S, Yang K, Jung S, Lv J, Lan L, Chen H, Hu D, Yang Q, Duan T, Kan Z, Yang C, Sun K, Lu S, Xiao Z, Li Y. iScience, 2020, 23: 100965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Cho Y, Lee J, Oh J, Kang SH, Lee SM, Lee B, Zhong L, Huang B, Lee S, Lee JW, Kim BJ, Li Y, Yang C. J Mater Chem A, 2020, 8: 13049–13058

    Article  CAS  Google Scholar 

  40. Fu J, Chen H, Huang P, Yu Q, Tang H, Chen S, Jung S, Sun K, Yang C, Lu S, Kan Z, Xiao Z, Li G. Nano Energy, 2021, 84: 105862

    Article  CAS  Google Scholar 

  41. Min J, Kwon OK, Cui C, Park JH, Wu Y, Park SY, Li Y, Brabec CJ. J Mater Chem A, 2016, 4: 14234–14240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52003013, 21734001, 51825301) and China Postdoctoral Science Foundation (BX20190023). H. W. Y acknowledges the financial support by the National Research Foundation (NRF) of Korea (2016M1A2A2940911, 2019R1A6A1A11044070). The authors thank Prof. Yanlin Song (ICCAS) for the assistance with optical microscope measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunhao Cai, Han Young Woo or Yanming Sun.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Ryu, H.S., Han, L. et al. High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Sci. China Chem. 64, 2161–2168 (2021). https://doi.org/10.1007/s11426-021-1121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1121-y

Keywords

Navigation