Skip to main content
Log in

Approaching 19% efficiency and stable binary polymer solar cells enabled by a solidification strategy of solvent additive

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Additives play a crucial role in enhancing the photovoltaic performance of polymer solar cells (PSCs). However, the typical additives used to optimize blend morphology of PSCs are still high boiling-point solvents, while their trace residues may reduce device stability. Herein, an effective strategy of “solidification of solvent additive (SSA)” has been developed to convert additive from liquid to solid, by introducing a covalent bond into low-cost solvent diphenyl sulfide (DPS) to synthesize solid dibenzothiophene (DBT) in one-step, which achieves optimized morphology thus promoting efficiency and device stability. Owing to the fine planarity and volatilization of DBT, the DBT-processed films achieve ordered molecular crystallinity and suitable phase separation compared to the additive-free or DPS-treated ones. Importantly, the DBT-processed device also possesses improved light absorption, enhanced charge transport, and thus a champion efficiency of 17.9% is achieved in the PM6:Y6-based PSCs with an excellent additive component tolerance, reproducibility, and stability. Additionally, the DBT-processed PM6:L8-BO-based PSCs are further fabricated to study the universality of SSA strategy, offering an impressive efficiency approaching 19% as one of the highest values in binary PSCs. In conclusion, this article developed a promising strategy named SSA to boost efficiency and improve stability of PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    Article  CAS  Google Scholar 

  2. Fukuda K, Yu K, Someya T. Adv Energy Mater, 2020, 10: 2000765

    Article  CAS  Google Scholar 

  3. Heeger AJ. Adv Mater, 2014, 26: 10–28

    Article  CAS  PubMed  Google Scholar 

  4. Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Chem Rev, 2022, 122: 14180–14274

    Article  CAS  PubMed  Google Scholar 

  5. Ma R, Fan Q, Dela Peña TA, Wu B, Liu H, Wu Q, Wei Q, Wu J, Lu X, Li M, Ma W, Li G. Adv Mater, 2023, 2212275

  6. Sun R, Wang T, Fan Q, Wu M, Yang X, Wu X, Yu Y, Xia X, Cui F, Wan J, Lu X, Hao X, Jen AKY, Spiecker E, Min J. Joule, 2023, 7: 221–237

    Article  CAS  Google Scholar 

  7. Fan Q, Lin FR, Ma W, Jen AKY. Sci China Chem, 2022, 66: 615–619

    Google Scholar 

  8. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497

    Article  CAS  Google Scholar 

  9. Zhu L, Zhang M, Xu J, Li C, Yan J, Zhou G, Zhong W, Hao T, Song J, Xue X, Zhou Z, Zeng R, Zhu H, Chen CC, MacKenzie RCI, Zou Y, Nelson J, Zhang Y, Sun Y, Liu F. Nat Mater, 2022, 21: 656–663

    Article  CAS  PubMed  Google Scholar 

  10. Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171–184

    Article  CAS  Google Scholar 

  11. He C, Pan Y, Ouyang Y, Shen Q, Gao Y, Yan K, Fang J, Chen Y, Ma CQ, Min J, Zhang C, Zuo L, Chen H. Energy Environ Sci, 2022, 15: 2537–2544

    Article  CAS  Google Scholar 

  12. Gao W, Qi F, Peng Z, Lin FR, Jiang K, Zhong C, Kaminsky W, Guan Z, Lee CS, Marks TJ, Ade H, Jen AKY. Adv Mater, 2022, 34: 2202089

    Article  CAS  Google Scholar 

  13. Gao J, Yu N, Chen Z, Wei Y, Li C, Liu T, Gu X, Zhang J, Wei Z, Tang Z, Hao X, Zhang F, Zhang X, Huang H. Adv Sci, 2022, 9: 2203606

    Article  CAS  Google Scholar 

  14. Wei Y, Chen Z, Lu G, Yu N, Li C, Gao J, Gu X, Hao X, Lu G, Tang Z, Zhang J, Wei Z, Zhang X, Huang H. Adv Mater, 2022, 34: 2204718

    Article  CAS  Google Scholar 

  15. Fan Q, Ma R, Bi Z, Liao X, Wu B, Zhang S, Su W, Fang J, Zhao C, Yan C, Chen K, Li Y, Gao C, Li G, Ma W. Adv Funct Mater, 2023, 33: 2211385

    Article  CAS  Google Scholar 

  16. Meng L, Liang H, Song G, Li M, Huang Y, Jiang C, Zhang K, Huang F, Yao Z, Li C, Wan X, Chen Y. Sci China Chem, 2023, 66: 808–815

    CAS  Google Scholar 

  17. Ma R, Yan C, Yu J, Liu T, Liu H, Li Y, Chen J, Luo Z, Tang B, Lu X, Li G, Yan H. ACS Energy Lett, 2022, 7: 2547–2556

    Article  CAS  Google Scholar 

  18. Xu X, Jing W, Meng H, Guo Y, Yu L, Li R, Peng Q. Adv Mater, 2023, 2208997

  19. Ma R, Yan C, Fong PWK, Yu J, Liu H, Yin J, Huang J, Lu X, Yan H, Li G. Energy Environ Sci, 2022, 15: 2479–2488

    Article  CAS  Google Scholar 

  20. Xu X, Li Y, Peng Q. Adv Mater, 2022, 34: 2101416

    Google Scholar 

  21. Ma R, Zhou K, Sun Y, Liu T, Kan Y, Xiao Y, Dela Peña TA, Li Y, Zou X, Xing Z, Luo Z, Wong KS, Lu X, Ye L, Yan H, Gao K. Matter, 2022, 5: 125–134

    Google Scholar 

  22. Qin J, Chen Z, Bi P, Yang Y, Zhang J, Huang Z, Wei Z, An C, Yao H, Hao X, Zhang T, Cui Y, Hong L, Liu C, Zu Y, He C, Hou J. Energy Environ Sci, 2021, 14: 5903–5910

    Article  CAS  Google Scholar 

  23. Chang Y, Zhu X, Shi Y, Liu Y, Meng K, Li Y, Xue J, Zhu L, Zhang J, Zhou H, Ma W, Wei Z, Lu K. Energy Environ Sci, 2022, 15: 2931–2941

    Google Scholar 

  24. Fan Q, Ma R, Su W, Zhu Q, Luo Z, Chen K, Tang Y, Lin FR, Li Y, Yan H, Yang C, Jen AK, Ma W. Carbon Energy, 2023, 5: 261

    Article  Google Scholar 

  25. McDowell C, Abdelsamie M, Toney MF, Bazan GC. Adv Mater, 2018, 30: 1101114

    Article  Google Scholar 

  26. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  27. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  28. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4134–4139

    Article  Google Scholar 

  29. Fan Q, Xu Z, Guo X, Meng X, Li W, Su W, Ou X, Ma W, Zhang M, Li Y. Nano Energy, 2011, 40: 20–26

    Article  Google Scholar 

  30. Wang J, Cui Y, Xu Y, Xian K, Bi P, Chen Z, Zhou K, Ma L, Zhang T, Yang Y, Zu Y, Yao H, Hao X, Ye L, Hou J. Adv Mater, 2022, 34: 2205009

    Article  CAS  Google Scholar 

  31. Tremolet de Villers BJ, O’Hara KA, Ostrowski DP, Biddle PH, Shaheen SE, Chabinyc ML, Olson DC, Kopidakis N. Chem Mater, 2016, 28: 816–884

    Article  Google Scholar 

  32. Cheng P, Yan C, Lau TK, Mai J, Lu X, Zhan X. Adv Mater, 2016, 28: 5822–5829

    Article  CAS  PubMed  Google Scholar 

  33. Cai J, Wang H, Zhang X, Li W, Li D, Mao Y, Du B, Chen M, Zhuang Y, Liu D, Qin HL, Zhao Y, Smith JA, Kilbride RC, Parnell AJ, Jones RAL, Lidzey DG, Wang T. J Mater Chem A, 2020, 8: 4230–4238

    Article  CAS  Google Scholar 

  34. Zhang D, Li Y, Li M, Zhong W, Heumüller T, Li N, Ying L, Brabec CJ, Huang F. Adv Funct Mater, 2022, 32: 2205338

    Article  CAS  Google Scholar 

  35. Zhong L, Kang S, Oh J, Jung S, Cho Y, Park G, Lee S, Yoon S, Park H, Yang C. Adv Funct Mater, 2022, 32: 2201080

    Article  CAS  Google Scholar 

  36. Zhang Y, Cho Y, Lee J, Oh J, Kang SH, Lee SM, Lee B, Zhong L, Huang B, Lee S, Lee JW, Kim BJ, Li Y, Yang C. J Mater Chem A, 2020, 8: 13049–13058

    Article  CAS  Google Scholar 

  37. Liao X, Li Q, Ye J, Li Z, Ren J, Zhang K, Xu Y, Cai YP, Liu S, Huang F. Chem Eng J, 2023, 453: 139489

    Article  CAS  Google Scholar 

  38. Song J, Li Y, Cai Y, Zhang R, Wang S, Xin J, Han L, Wei D, Ma W, Gao F, Sun Y. Matter, 2022, 5: 4041–4059

    Google Scholar 

  39. Bao S, Yang H, Fan H, Zhang J, Wei Z, Cui C, Li Y. Adv Mater, 2021, 33: 2105301

    Article  CAS  Google Scholar 

  40. Ma YF, Zhang Y, Zhang HL. J Mater Chem C, 2022, 10: 2364–2314

    Article  CAS  Google Scholar 

  41. Fan C, Yang H, Zhang Q, Bao S, Fan H, Zhu X, Cui C, Li Y. Sci China Chem, 2021, 64: 2011–2024

    Google Scholar 

  42. Liu L, Kan Y, Gao K, Wang J, Zhao M, Chen H, Zhao C, Jiu T, Jen AKY, Li Y. Adv Mater, 2020, 32: 1901604

    Google Scholar 

  43. Deng J, Huang B, Li W, Zhang L, Jeong SY, Huang S, Zhang S, Wu F, Xu X, Zou G, Woo HY, Chen Y, Chen L. Angew Chem Int Ed, 2022, 61: e202202111

    Google Scholar 

  44. Sun Y, Nian L, Kan Y, Ren Y, Chen Z, Zhu L, Zhang M, Yin H, Xu H, Li J, Hao X, Liu F, Gao K, Li Y. Joule, 2022, 6: 2835–2848

    Article  CAS  Google Scholar 

  45. Fu J, Chen H, Huang P, Yu Q, Tang H, Chen S, Jung S, Sun K, Yang C, Lu S, Kan Z, Xiao Z, Li G. Nano Energy, 2021, 84: 105862

    Article  CAS  Google Scholar 

  46. Song X, Zhang K, Guo R, Sun K, Zhou Z, Huang S, Huber L, Reus M, Zhou J, Schwartzkopf M, Roth SV, Liu W, Liu Y, Zhu W, Müller-Buschbaum P. Adv Mater, 2022, 34: 2200901

    Google Scholar 

  47. Yu R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, Li S, Hou J. Nat Commun, 2018, 9: 4645

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cai G, Chen Z, Xia X, Li Y, Wang J, Liu H, Sun PP, Li C, Ma R, Zhou Y, Chi W, Zhang J, Zhu H, Xu J, Yan H, Zhan X, Lu X. Adv Sci, 2022, 9: 2200518

    Article  Google Scholar 

  49. Li C, Gu X, Chen Z, Han X, Yu N, Wei Y, Gao J, Chen H, Zhang M, Wang A, Zhang J, Wei Z, Peng Q, Tang Z, Hao X, Zhang X, Huang H. J Am Chem Soc, 2022, 144: 14131–14139

    Google Scholar 

  50. Li J, Wang Y, Liang Z, Wang N, Tong J, Yang C, Bao X, Xia Y. ACS Appl Mater Interfaces, 2019, 11: 1022–1029

    Google Scholar 

  51. Xiao J, Jia X, Duan C, Huang F, Yip HL, Cao Y. Adv Mater, 2021, 33: 2008158

    Article  CAS  Google Scholar 

  52. Che R, Wu Z, Li Z, Xiang H, Zhou X. Chem Eur J, 2014, 20: 1258–1261

    Article  Google Scholar 

  53. Yu R, Yao H, Chen Z, Xin J, Hong L, Xu Y, Zu Y, Ma W, Hou J. Adv Mater, 2019, 31: 1900411

    Google Scholar 

  54. Ye L, Cai Y, Li C, Zhu L, Xu J, Weng K, Zhang K, Huang M, Zeng M, Li T, Zhou E, Tan S, Hao X, Yi Y, Liu F, Wang Z, Zhan X, Sun Y. Energy Environ Sci, 2020, 13: 5111–5125

    Article  Google Scholar 

  55. Fan H, Yang H, Wu Y, Yildiz O, Zhu X, Marszalek T, Blom PWM, Cui C, Li Y. Adv Funct Mater, 2021, 31: 2103944

    Article  CAS  Google Scholar 

  56. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F. Adv Energy Mater, 2018, 8: 1801352

    Article  Google Scholar 

  57. Fan B, Gao W, Wu X, Xia X, Wu Y, Lin FR, Fan Q, Lu X, Li WJ, Ma W, Jen AKY. Nat Commun, 2022, 13: 5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang C, An Q, Bai H, Zhi H, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang J. Angew Chem Intl Edit, 2021, 60: 19241–19252

    Article  CAS  Google Scholar 

  59. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 212–215

    Google Scholar 

  60. Chen J, Cao J, Liu L, Xie L, Zhou H, Zhang J, Zhang K, Xiao M, Huang F. Adv Funct Mater, 2022, 32: 2200629

    Article  CAS  Google Scholar 

  61. Zhan L, Li S, Li Y, Sun R, Min J, Bi Z, Ma W, Chen Z, Zhou G, Zhu H, Shi M, Zuo L, Chen H. Joule, 2022, 6: 662–615

    Article  CAS  Google Scholar 

  62. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF. Chem Rev, 2012, 112: 5488–5519

    Article  CAS  PubMed  Google Scholar 

  63. Yang D, Löhrer FC, Körstgens V, Schreiber A, Cao B, Bernstorff S, Müller-Buschbaum P. Adv Sci, 2020, 1: 2001111

    Google Scholar 

Download references

Acknowledgements

M. Xiao thanks for the financial support from the Scientific Research Project of Education Department of Hunan Province (21C0091) and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology) (2023-skllmd-13). Q. Fan and W. Su thank for the support from the National Natural Science Foundation of China (22209131, 22005121). The authors thank for the open fund support from School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications (GDRGCS2021002, GDRGCS2022003, GDRGCS2022002). W. Ma thanks for the support from the National Key Research and Development Program of China (2022YFE0132400), the National Natural Science Foundation of China (21875182, 52173023), the Key Scientific and Technological Innovation Team Project of Shaanxi Province (2020TD-002), and 111 Project 2.0 (BP0618008). X-ray data was acquired at beamlines 7.3.3 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DE-AC02-05CH11231). Dr. Ruijie Ma from the Hong Kong Polytechnic University is appreciated for verifying the photovoltaic performance of PSCs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manjun Xiao, Chao Xu, Wei Ma or Qunping Fan.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1564_MOESM1_ESM.pdf

Approaching 19% Efficiency and Stable Binary Polymer Solar Cells Enabled by a Solidification Strategy of Solvent Additive

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Liu, L., Meng, Y. et al. Approaching 19% efficiency and stable binary polymer solar cells enabled by a solidification strategy of solvent additive. Sci. China Chem. 66, 1500–1510 (2023). https://doi.org/10.1007/s11426-023-1564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1564-8

Navigation