Skip to main content
Log in

Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Developing efficient electrocatalysts for selective nitrate contamination reduction into value-added ammonia is significant. Here, heterostructured Co/CoO nanosheet arrays (Co/CoO NSAs) exhibited excellent Faradaic efficiency (93.8%) and selectivity (91.2%) for nitrate electroreduction to ammonia, greatly outperforming Co NSAs. 15N isotope labeling experiments and 1H nuclear magnetic resonance (NMR) quantitative testing methods confirmed the origin of the produced ammonia. Electrochemical in situ Fourier transform infrared (FTIR) spectroscopy, online differential electrochemical mass spectrometry (DEMS) data and density functional theory (DFT) results revealed that the superior performances arose from the electron deficiency of Co induced by the rectifying Schottky contact in the Co/CoO heterostructures. The electron transfer from Co to CoO at the interface could not only suppress the competitive hydrogen evolution reaction, but also increase energy barriers for by-products, thus leading to high Faradaic efficiency and selectivity of ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang C, Qiao SZ. Chem Soc Rev, 2019, 48: 3166–3180

    CAS  PubMed  Google Scholar 

  2. Hao YC, Guo Y, Chen LW, Shu M, Wang XY, Bu TA, Gao WY, Zhang N, Su X, Feng X, Zhou JW, Wang B, Hu CW, Yin AX, Si R, Zhang YW, Yan CH. Nat Catal, 2019, 2: 448–456

    CAS  Google Scholar 

  3. Canfield DE, Glazer AN, Falkowski PG. Science, 2010, 330: 192–196

    CAS  PubMed  Google Scholar 

  4. Fang Z, Yu G. Sci China Chem, 2018, 61: 1045–1046

    CAS  Google Scholar 

  5. Wang P, Chang F, Gao W, Guo J, Wu G, He T, Chen P. Nat Chem, 2016, 9: 64–70

    PubMed  Google Scholar 

  6. Yang X, Kattel S, Nash J, Chang X, Lee JH, Yan Y, Chen JG, Xu B. Angew Chem Int Ed, 2019, 58: 13768–13772

    CAS  Google Scholar 

  7. Hill PJ, Doyle LR, Crawford AD, Myers WK, Ashley AE. J Am Chem Soc, 2016, 138: 13521–13524

    CAS  PubMed  Google Scholar 

  8. Patil BS, Wang Q, Hessel V, Lang J. Catal Today, 2015, 256: 49–66

    CAS  Google Scholar 

  9. Liu Y, Cheng M, He Z, Gu B, Xiao C, Zhou T, Guo Z, Liu J, He H, Ye B, Pan B, Xie Y. Angew Chem Int Ed, 2019, 58: 731–735

    CAS  Google Scholar 

  10. Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG, King P, Lancaster KM, Lymar SV, Pfromm P, Schneider WF, Schrock RR. Science, 2018, 360: eaar6611

    PubMed  PubMed Central  Google Scholar 

  11. Comer BM, Fuentes P, Dimkpa CO, Liu YH, Fernandez CA, Arora P, Realff M, Singh U, Hatzell MC, Medford AJ. Joule, 2019, 3: 1578–1605

    CAS  Google Scholar 

  12. Lan R, Tao S. Front Energy Res, 2014, 2: 35

    Google Scholar 

  13. Wang Y, Shi M, Bao D, Meng F, Zhang Q, Zhou Y, Liu K, Zhang Y, Wang J, Chen Z, Liu D, Jiang Z, Luo M, Gu L, Zhang Q, Cao X, Yao Y, Shao M, Zhang Y, Zhang X, Chen JG, Yan J, Jiang Q. Angew Chem Int Ed, 2019, 58: 9464–9469

    CAS  Google Scholar 

  14. Andersen SZ, Čolić V, Yang S, Schwalbe JA, Nielander AC, McE-naney JM, Enemark-Rasmussen K, Baker JG, Singh AR, Rohr BA, Statt MJ, Blair SJ, Mezzavilla S, Kibsgaard J, Vesborg PCK, Cargnello M, Bent SF, Jaramillo TF, Stephens IEL, Nørskov JK, Chorkendorff I. Nature, 2019, 570: 504–508

    CAS  PubMed  Google Scholar 

  15. Huang P, Liu W, He Z, Xiao C, Yao T, Zou Y, Wang C, Qi Z, Tong W, Pan B, Wei S, Xie Y. Sci China Chem, 2018, 61: 1187–1196

    CAS  Google Scholar 

  16. Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, Ozin GA. Joule, 2018, 2: 1055–1074

    CAS  Google Scholar 

  17. Légaré MA, Bélanger-Chabot G, Dewhurst RD, Welz E, Krummenacher I, Engels B, Braunschweig H. Science, 2018, 359: 896–900

    PubMed  Google Scholar 

  18. Jia H, Du A, Zhang H, Yang J, Jiang R, Wang J, Zhang C. J Am Chem Soc, 2019, 141: 5083–5086

    CAS  PubMed  Google Scholar 

  19. Gao X, An L, Qu D, Jiang W, Chai Y, Sun S, Liu X, Sun Z. Sci Bull, 2019, 64: 918–925

    CAS  Google Scholar 

  20. Hansen AT, Dolph CL, Foufoula-Georgiou E, Finlay JC. Nat Geosci, 2018, 11: 127–132

    CAS  Google Scholar 

  21. Heck KN, Garcia-Segura S, Westerhoff P, Wong MS. Acc Chem Res, 2019, 52: 906–915

    CAS  PubMed  Google Scholar 

  22. Martínez J, Ortiz A, Ortiz I. Appl Catal B-Environ, 2017, 207: 42–59

    Google Scholar 

  23. González Pérez O, Bisang JM. Electrochim Acta, 2016, 194: 448–453

    Google Scholar 

  24. Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, Westerhoff P. Appl Catal B-Environ, 2018, 236: 546–568

    CAS  Google Scholar 

  25. Stirling A, Pápai I, Mink J, Salahub DR. J Chem Phys, 1994, 100: 2910–2923

    CAS  Google Scholar 

  26. Carlson RM. Anal Chem, 1978, 50: 1528–1531

    CAS  Google Scholar 

  27. Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Natl Sci Rev, 2019, 6: 730–738

    CAS  Google Scholar 

  28. Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Angew Chem Int Ed, 2020, 59: 5350–5354

    CAS  Google Scholar 

  29. Li XH, Antonietti M. Chem Soc Rev, 2013, 42: 6593–6604

    CAS  PubMed  Google Scholar 

  30. Lin YX, Zhang SN, Xue ZH, Zhang JJ, Su H, Zhao TJ, Zhai GY, Li XH, Antonietti M, Chen JS. Nat Commun, 2019, 10: 4380

    PubMed  PubMed Central  Google Scholar 

  31. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z. Science, 2015, 347: 970–974

    CAS  PubMed  Google Scholar 

  32. Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L. Angew Chem Int Ed, 2018, 57: 496–500

    CAS  Google Scholar 

  33. Li D, Ding LX, Wang S, Cai D, Wang H. J Mater Chem A, 2014, 2: 5625–5630

    CAS  Google Scholar 

  34. Chen M, Zhou Q, Du X, Zhang J, Li W, Lu Y, Zhang D, Qi P, Tang Y. J Alloys Compd, 2019, 783: 363–370

    CAS  Google Scholar 

  35. Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, Feng G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J. Nat Nanotech, 2014, 9: 69–73

    CAS  Google Scholar 

  36. Lu Y, Dong CL, Huang YC, Zou Y, Liu Y, Li Y, Zhang N, Chen W, Zhou L, Lin H, Wang S. Sci China Chem, 2020, 63: 980–986

    CAS  Google Scholar 

  37. Su H, Zhang KX, Zhang B, Wang HH, Yu QY, Li XH, Antonietti M, Chen JS. J Am Chem Soc, 2017, 139: 811–818

    CAS  PubMed  Google Scholar 

  38. Zhang C, Shi Y, Yu Y, Du Y, Zhang B. ACS Catal, 2018, 8: 8077–8083

    CAS  Google Scholar 

  39. Gao R, Liu L, Hu Z, Zhang P, Cao X, Wang B, Liu X. J Mater Chem A, 2015, 3: 17598–17605

    CAS  Google Scholar 

  40. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Appl Surf Sci, 2011, 257: 2717–2730

    CAS  Google Scholar 

  41. Zhang L, Ding L, Chen G, Yang X, Wang H. Angew Chem Int Ed, 2019, 58: 2612–2616

    CAS  Google Scholar 

  42. Zhou P, He J, Zou Y, Wang Y, Xie C, Chen R, Zang S, Wang S. Sci China Chem, 2019, 62: 1365–1370

    CAS  Google Scholar 

  43. da Cunha MCPM, De Souza JPI, Nart FC. Langmuir, 2000, 16: 771–777

    CAS  Google Scholar 

  44. Hu C, Zhang L, Li L, Zhu W, Deng W, Dong H, Zhao ZJ, Gong J. Sci China Chem, 2019, 62: 1030–1036

    CAS  Google Scholar 

  45. Figueiredo MC, Solla-Gullón J, Vidal-Iglesias FJ, Climent V, Feliu JM. Catal Today, 2013, 202: 2–11

    CAS  Google Scholar 

  46. Pérez-Gallent E, Figueiredo MC, Katsounaros I, Koper MTM. Electrochim Acta, 2017, 227: 77–84

    Google Scholar 

  47. Guo Y, Stroka JR, Kandemir B, Dickerson CE, Bren KL. J Am Chem Soc, 2018, 140: 16888–16892

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21871206, 21701122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Yu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2020_9795_MOESM1_ESM.pdf

Promoting Selective Electroreduction of Nitrate to Ammonia over Electron-Deficient Co Modulated by Schottky Rectifying Contact

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, C., Yu, Y. et al. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Sci. China Chem. 63, 1469–1476 (2020). https://doi.org/10.1007/s11426-020-9795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9795-x

Keywords

Navigation