Skip to main content
Log in

Polysaccharides from Lentinus edodes prevent acquired drug resistance to docetaxel in prostate cancer cells by decreasing the TGF-β1 secretion of cancer-associated fibroblasts

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Prostate cancer is one of the most prevalent lethal diseases among men globally. In the treatment of prostate cancer, the limited therapeutic efficacy of the standard non-hormonal systemic therapy docetaxel (DTX) represents an important challenge. Cancer-associated fibroblasts (CAFs) play a crucial role in resistance to therapy because of their prevalence and functional pleiotropy in tumor environments. Our previous research revealed that MPSSS, a novel polysaccharide extracted from Lentinus edodes, could significantly attenuate the immunosuppressive function of myeloid suppressor cells and CAFs. In this study, we investigated whether MPSSS could potentiate the efficacy of DTX against prostate cancer by inhibiting CAF-induced chemoresistance and elucidated its underlying mechanisms. The sensitivity of PC-3 prostate cancer cells cultured with conditioned medium derived from CAFs (CAF-CM) to DTX was assessed. The resistance effect induced by CAF-CM was abolished when CAFs were pretreated with MPSSS. Bioinformatic analysis of datasets from the Gene Expression Omnibus database revealed the activation of the transforming growth factor β1 (TGF-β1) signaling pathway in DTX-resistant cells. Based on this finding, we demonstrated that treatment with the TGF-β1 receptor inhibitor SB525334 reversed DTX resistance in CAFs, suggesting that TGF-β1 secreted by CAFs was a crucial intermediary in the development of DTX resistance in PC3 cells. Further research revealed that MPSSS decreases the secretion of TGF-β1 by inhibiting the JAK2/STAT3 pathway via Toll-like receptor 4 in CAFs. Overall, MPSSS might be a potential adjuvant treatment for DTX resistance in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crawford ED, Higano CS, Shore ND, Hussain M, Petrylak DP (2015) Treating patients with metastatic castration resistant prostate cancer: a comprehensive review of available therapies. J Urol 194:1537–1547. https://doi.org/10.1016/j.juro.2015.06.106

    Article  PubMed  Google Scholar 

  2. Seidenfeld J, Samson DJ, Hasselblad V, Aronson N, Albertsen PC, Bennett CL, Wilt TJ (2000) Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med 132:566–577. https://doi.org/10.7326/0003-4819-132-7-200004040-00009

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP, Gao AC (2013) Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther 12:1829–1836. https://doi.org/10.1158/1535-7163.Mct-13-0208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S (2022) Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. https://doi.org/10.3390/molecules27175730

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maji S, Panda S, Samal SK, Shriwas O, Rath R, Pellecchia M, Emdad L, Das SK, Fisher PB, Dash R (2018) Bcl-2 antiapoptotic family proteins and chemoresistance in cancer. Adv Cancer Res 137:37–75. https://doi.org/10.1016/bs.acr.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  6. Castillo V, Valenzuela R, Huidobro C, Contreras HR, Castellon EA (2014) Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. Int J Oncol 45:985–994. https://doi.org/10.3892/ijo.2014.2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skvortsov S, Skvortsova II, Tang DG, Dubrovska A (2018) Concise review: prostate cancer stem cells: current understanding. Stem Cells 36:1457–1474. https://doi.org/10.1002/stem.2859

    Article  PubMed  Google Scholar 

  8. Liu C, Li Z, Bi L, Li K, Zhou B, Xu C, Huang J, Xu K (2014) NOTCH1 signaling promotes chemoresistance via regulating ABCC1 expression in prostate cancer stem cells. Mol Cell Biochem 393:265–270. https://doi.org/10.1007/s11010-014-2069-4

    Article  CAS  PubMed  Google Scholar 

  9. Cui D, Dai J, Keller JM, Mizokami A, Xia S, Keller ET (2015) Notch pathway inhibition using PF-03084014, a γ-secretase inhibitor (GSI), enhances the antitumor effect of docetaxel in prostate cancer. Clin Cancer Res 21:4619–4629. https://doi.org/10.1158/1078-0432.Ccr-15-0242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mimeault M, Rachagani S, Muniyan S, Seshacharyulu P, Johansson SL, Datta K, Lin MF, Batra SK (2015) Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer. Oncotarget 6:3887–3903. https://doi.org/10.18632/oncotarget.2932

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mediavilla-Varela M, Pacheco FJ, Almaguel F, Perez J, Sahakian E, Daniels TR, Leoh LS, Padilla A, Wall NR, Lilly MB, De Leon M, Casiano CA (2009) Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer 8:68. https://doi.org/10.1186/1476-4598-8-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hara T, Ushio K, Nishiwaki M, Kouno J, Araki H, Hikichi Y, Hattori M, Imai Y, Yamaoka M (2010) A mutation in beta-tubulin and a sustained dependence on androgen receptor signalling in a newly established docetaxel-resistant prostate cancer cell line. Cell Biol Int 34:177–184. https://doi.org/10.1042/cbi20090030

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB (2019) Inflammation and cancer. Ann Afr Med 18:121–126. https://doi.org/10.4103/aam.aam_56_18

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54. https://doi.org/10.1038/35094059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401. https://doi.org/10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  17. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 101:4966–4971. https://doi.org/10.1073/pnas.0401064101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McAllister SS, Weinberg RA (2010) Tumor-host interactions: a far-reaching relationship. J Clin Oncol 28:4022–4028. https://doi.org/10.1200/jco.2010.28.4257

    Article  PubMed  Google Scholar 

  19. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707. https://doi.org/10.1016/j.cell.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Sun C, Qin Z (2021) Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics 11:8322–8336. https://doi.org/10.7150/thno.62378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peltanova B, Raudenska M, Masarik M (2019) Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 18:63. https://doi.org/10.1186/s12943-019-0983-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  23. Rouhollahi E, Moghadamtousi SZ, Al-Henhena N, Kunasegaran T, Hasanpourghadi M, Looi CY, Abd Malek SN, Awang K, Abdulla MA, Mohamed Z (2015) The chemopreventive potential of Curcuma purpurascens rhizome in reducing azoxymethane-induced aberrant crypt foci in rats. Drug Des Devel Ther 9:3911–3922. https://doi.org/10.2147/dddt.S84560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu H, Tao N, Liu X, Li X, Tang J, Ma C, Xu X, Shao H, Hou B, Wang H, Qin Z (2012) Polysaccharide from Lentinus edodes inhibits the immunosuppressive function of myeloid-derived suppressor cells. PLoS One 7:e51751. https://doi.org/10.1371/journal.pone.0051751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aoki-Kinoshita KF, Kanehisa M (2007) Gene annotation and pathway mapping in KEGG. Methods Mol Biol 396:71–91. https://doi.org/10.1007/978-1-59745-515-2_6

    Article  CAS  PubMed  Google Scholar 

  27. Bissonnette RP, Echeverri F, Mahboubi A, Green DR (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359:552–554. https://doi.org/10.1038/359552a0

    Article  CAS  PubMed  Google Scholar 

  28. Miyashita T, Reed JC (1992) bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 52:5407–5411

    CAS  PubMed  Google Scholar 

  29. Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S (2021) New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 141:111824. https://doi.org/10.1016/j.biopha.2021.111824

    Article  CAS  PubMed  Google Scholar 

  30. Oshimori N, Oristian D, Fuchs E (2015) TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160:963–976. https://doi.org/10.1016/j.cell.2015.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo S, Deng CX (2018) Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci 14:2083–2093. https://doi.org/10.7150/ijbs.25720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chan JSK, Sng MK, Teo ZQ, Chong HC, Twang JS, Tan NS (2018) Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors. Oncogene 37:160–173. https://doi.org/10.1038/onc.2017.319

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, Ma J, Zheng Q, Wang Y, Hu M, Ma F, Qin Z, Lei N, Tao N (2019) MPSSS impairs the immunosuppressive function of cancer-associated fibroblasts via the TLR4-NF-kappaB pathway. Biosci Rep. https://doi.org/10.1042/BSR20182171

  34. Shen W, Pang H, Liu J, Zhou J, Zhang F, Liu L, Ma N, Zhang N, Zhang H, Liu L (2014) Epithelial-mesenchymal transition contributes to docetaxel resistance in human non-small cell lung cancer. Oncol Res 22:47–55. https://doi.org/10.3727/096504014x14098532393473

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang T, Li N, Jin L, Qi X, Zhang C, Hua D (2020) The calcium pump PMCA4 prevents epithelial-mesenchymal transition by inhibiting NFATc1-ZEB1 pathway in gastric cancer. Biochim Biophys Acta Mol Cell Res 1867:118833. https://doi.org/10.1016/j.bbamcr.2020.118833

    Article  CAS  PubMed  Google Scholar 

  36. Shen Z, Zhou L, Zhang C, Xu J (2020) Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett 468:88–101. https://doi.org/10.1016/j.canlet.2019.10.006

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Zhang B, Xiang L, Xia S, Kucuk O, Deng X, Boise LH, Dong JT (2020) TGF-β causes docetaxel resistance in prostate cancer via the induction of Bcl-2 by acetylated KLF5 and protein stabilization. Theranostics 10:7656–7670. https://doi.org/10.7150/thno.44567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akhurst RJ (2017) Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022301

    Article  PubMed  PubMed Central  Google Scholar 

  39. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584. https://doi.org/10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  40. Micke P, Ostman A (2004) Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 45(Suppl 2):S163-175. https://doi.org/10.1016/j.lungcan.2004.07.977

    Article  PubMed  Google Scholar 

  41. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E (2020) In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer 146:895–905. https://doi.org/10.1002/ijc.32193

    Article  CAS  PubMed  Google Scholar 

  42. Dolinay T, Kim YS, Howrylak J, Hunninghake GM, An CH, Fredenburgh L, Massaro AF, Rogers A, Gazourian L, Nakahira K, Haspel JA, Landazury R, Eppanapally S, Christie JD, Meyer NJ, Ware LB, Christiani DC, Ryter SW, Baron RM, Choi AM (2012) Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med 185:1225–1234. https://doi.org/10.1164/rccm.201201-0003OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwamoto M, Nakamura Y, Takemura M, Hisaoka-Nakashima K, Morioka N (2020) TLR4-TAK1-p38 MAPK pathway and HDAC6 regulate the expression of sigma-1 receptors in rat primary cultured microglia. J Pharmacol Sci 144:23–29. https://doi.org/10.1016/j.jphs.2020.06.007

    Article  CAS  PubMed  Google Scholar 

  44. Du J, Wang R, Zhang W, Zhang C, Li X, Shi X, Hu M, Ma F, Ma C, Wang X, Tao N, Qin Z (2017) A polysaccharide derived from Lentinus edodes impairs the immunosuppressive function of myeloid-derived suppressor cells via the p38 pathways. RSC Adv 7:36533–36540. https://doi.org/10.1039/c7ra06789e

    Article  CAS  Google Scholar 

  45. Wang K, Fang S, Liu Q, Gao J, Wang X, Zhu H, Zhu Z, Ji F, Wu J, Ma Y, Hu L, Shen X, Gao D, Zhu J, Liu P, Zhou H (2019) TGF-β1/p65/MAT2A pathway regulates liver fibrogenesis via intracellular SAM. EBioMedicine 42:458–469. https://doi.org/10.1016/j.ebiom.2019.03.058

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang G, Bai R, Huang J, Gao Y, Yun X, Haji AA (2022) Barbaloin attenuates pulmonary fibrosis through TGF-β1/Smads/p38 pathway. J Pharm Pharmacol 74:1160–1169. https://doi.org/10.1093/jpp/rgac023

    Article  PubMed  Google Scholar 

  47. Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J, Tuveson DA (2019) IL1-induced JAK/STAT signaling is antagonized by TGFbeta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov 9:282–301. https://doi.org/10.1158/2159-8290.CD-18-0710

    Article  PubMed  Google Scholar 

  48. Chen WD, Zhang JL, Wang XY, Hu ZW, Qian YB (2019) The JAK2/STAT3 signaling pathway is required for inflammation and cell death induced by cerulein in AR42J cells. Eur Rev Med Pharmacol Sci 23:1770–1777. https://doi.org/10.26355/eurrev_201902_17139

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Miss Shuoshuo Ma for her advice and encouragement, and thank Prof. Qinghong Meng for her advice in writing, and thank Dr. Joe Barber Jr. from Edanz for editing the English text of a draft of this manuscript.

Funding

This study was supported by grants from the National Natural Science Foundation of China (31370910).

Author information

Authors and Affiliations

Authors

Contributions

LB, NT, and WZ designed the research. WZ and LB revised and submitted the manuscript. WZ and NT performed the experiments, and LB analyzed the data.

Corresponding authors

Correspondence to Ning Tao or Li Bai.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Tao, N. & Bai, L. Polysaccharides from Lentinus edodes prevent acquired drug resistance to docetaxel in prostate cancer cells by decreasing the TGF-β1 secretion of cancer-associated fibroblasts. J Nat Med 77, 817–828 (2023). https://doi.org/10.1007/s11418-023-01722-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01722-w

Keywords

Navigation