Skip to main content

Advertisement

Log in

Increased levels of hyper-stable protein aggregates in plasma of older adults

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Proteins that misfold into hyper-stable/degradation-resistant species during aging may accumulate and disrupt protein homeostasis (i.e., proteostasis), thereby posing a survival risk to any organism. Using the method diagonal two-dimensional (D2D) SDS-PAGE, which separates hyper-stable SDS-resistant proteins at a proteomics level, we analyzed the plasma of healthy young (<30 years) and older (60–80 years) adults. We discovered the presence of soluble SDS-resistant protein aggregates in the plasma of older adults, but found significantly lower levels in the plasma of young adults. We identified the inflammation-related chaperone protein haptoglobin as the main component of the hyper-stable aggregates. This observation is consistent with the growing link between accumulations of protein aggregates and aging across many organisms. It is plausible higher amounts of SDS-resistant protein aggregates in the plasma of older adults may reflect a compromise in proteostasis that may potentially indicate cellular aging and/or disease risk. The results of this study have implications for further understanding the link between aging and the accumulation of protein aggregates, as well as potential for the development of aging-related biomarkers. More broadly, this novel application of D2D SDS-PAGE may be used to identify, quantify, and characterize the degradation-resistant protein aggregates in human plasma or any biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baig UI, Bhadbhade BJ, Watve MG (2014) Evolution of aging and death: what insights bacteria can provide. Q Rev Biol 89:209–223

    Article  PubMed  Google Scholar 

  • Bailey RA (2008) Design of comparative experiments. Cambridge University Press, New York

    Book  Google Scholar 

  • Baker GT, Sprott RL (1988) Biomarkers of aging. Exp Gerontol 23:223–239

    Article  PubMed  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  • Byerley LO, Leamy L, Tam SW, Chou CW, Ravussin E, Study LHA (2010) Development of a serum profile for healthy aging. Age 32:497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casella G (2008) Statistical design. Springer-Verlag, New York

    Book  Google Scholar 

  • David DC (2012) Aging and the aggregating proteome. Front Genet 3:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding J, Kopchick JJ (2011) Plasma biomarkers of mouse aging. Age 33:291–307

    Article  CAS  PubMed  Google Scholar 

  • Emanuele E (2014) Can trehalose prevent neurodegeneration? Insights from experimental studies. Curr Drug Targets 15:551–557

    Article  CAS  PubMed  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci L et al. (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91:439–446

    Article  CAS  PubMed  Google Scholar 

  • Jones OR et al. (2014) Diversity of ageing across the tree of life. Nature 505:169–173

    Article  CAS  PubMed  Google Scholar 

  • Kang R et al. (2008) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456:904–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz PR, Karuza J, Gutman SI, Bartholomew W, Richman G (1990) A comparison between erythrocyte sedimentation rate (ESR) and selected acute-phase proteins in the elderly. Am J Clin Pathol 94:637–640

    Article  CAS  PubMed  Google Scholar 

  • Knoefler D, Thamsen M, Koniczek M, Niemuth NJ, Diederich AK, Jakob U (2012) Quantitative in vivo redox sensors uncover oxidative stress as an early event in life. Mol Cell 47:767–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215

    Article  CAS  PubMed  Google Scholar 

  • Labbadia J and Morimoto RI. (2014) Proteostasis and longevity: when does aging really begin? F1000Prime Rep 6: 7

  • Lepez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  Google Scholar 

  • Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A 105:3076–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonneuve E, Ezraty B, Dukan S (2008) Protein aggregates: an aging factor involved in cell death. J Bacteriol 190:6070–6075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning M, Colon W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward beta-sheet structure. Biochemistry 43:11248–11254

    Article  CAS  PubMed  Google Scholar 

  • Miura Y et al. (2011) Proteomic analysis of plasma proteins in Japanese semisuper centenarians. Exp Gerontol 46:81–85

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napolioni V, Gianni P, Carpi FM, Concetti F, Lucarini N (2011) Haptoglobin (HP) polymorphisms and human longevity: a cross-sectional association study in a Central Italy population. Clin Chim Acta 412:574–577

    Article  CAS  PubMed  Google Scholar 

  • Pareja-Galeano H, Alis R, Sanchis-Gomar F, Lucia A, Emanuele E (2015) Vitamin D, precocious acute myocardial infarction, and exceptional longevity. Int J Cardiol 199:405–406

    Article  PubMed  Google Scholar 

  • Rana A, Rera M, Walker DW (2013) Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A 110:8638–8643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau F, Serrano L, Schymkowitz JW (2006) How evolutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol 355:1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Rowe JW, Kahn RL (1987) Human aging—usual and successful. Science 237:143–149

    Article  CAS  PubMed  Google Scholar 

  • Shamsi KS, Pierce A, Ashton AS, Halade DG, Richardson A, Espinoza SE (2012) Proteomic screening of glycoproteins in human plasma for frailty biomarkers. J Gerontol A Biol Sci Med Sci 67:853–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Song IU, Kim YD, Chung SW, Cho HJ (2015) Association between serum haptoglobin and the pathogenesis of Alzheimer’s disease. Intern Med 54:453–457

    Article  CAS  PubMed  Google Scholar 

  • Spagnuolo MS et al. (2014a) Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk. ACS Chem Neurosci 5:837–847

    Article  CAS  PubMed  Google Scholar 

  • Spagnuolo MS et al. (2014b) Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines. Front Cell Neurosci 8:1–13

    Article  Google Scholar 

  • Tartaglia GG, Pellarin R, Cavalli A, Caflisch A (2005) Organism complexity anti-correlates with proteomic beta-aggregation propensity. Protein Sci 14:2735–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teunissen CE et al. (2011) Consensus guidelines for CSF and blood biobanking for CNS biomarker studies. Mult Scler Int 2011:246412

    PubMed  PubMed Central  Google Scholar 

  • Theilgaard-Monch K et al. (2006) Haptoglobin is synthesized during granulocyte differentiation, stored in specific granules, and released by neutrophils in response to activation. Blood 108:353–361

    Article  CAS  PubMed  Google Scholar 

  • Xia K, Manning M, Hesham H, Lin Q, Bystroff C, Colon W (2007) Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. Proc Natl Acad Sci U S A 104:17329–17334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia K, Zhang S, Bathrick B, Liu S, Garcia Y, Colon W (2012) Quantifying the kinetic stability of hyperstable proteins via time-dependent SDS trapping. Biochemistry 51:100–107

    Article  CAS  PubMed  Google Scholar 

  • Yerbury JJ, Rybchyn MS, Easterbrook-Smith SB, Henriques C, Wilson MR (2005) The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44:10914–10925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant (#1158375) from the National Science Foundation to W. Colón.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfredo Colón.

Ethics declarations

All participants were recruited with informed consent and approval by the Institutional Review Board.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, K., Trasatti, H., Wymer, J.P. et al. Increased levels of hyper-stable protein aggregates in plasma of older adults. AGE 38, 56 (2016). https://doi.org/10.1007/s11357-016-9919-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-016-9919-9

Keywords

Navigation