Skip to main content
Log in

Mapping the knowledge domain of microbial desulfurization application in fuels and ores for sustainable industry

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Direct application of high-sulfur fuels and ores can cause environmental pollution (such as air pollution and acid rain) and, in serious cases, endanger human health and contribute to property damage. In the background of preserving the environment, microbial desulfurization technologies for high-sulfur fuels and ores are rapidly developed. This paper aims to reveal the progress of microbial desulfurization research on fuels and ores using bibliometric analysis. 910 publications on microbial desulfurization of fuels and ores from web core databases were collected in this work, spanning 39 years. Through 910 retrieved documents, collaborative networks of authors, institutions and countries were mapped by this work, the sources of highly cited articles and cited documents were statistically analyzed, and keyword development from different perspectives was discussed. The results of the study provide a reference for microbial desulfurization research and benefit environmental protection and energy green applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Biorefin 3(1):42–71

    CAS  Google Scholar 

  • Abdollahy M, Moghaddam AZ, Rami K (2006) Desulfurization of mezino coal using combination of ‘flotation’ and ‘leaching with potassium hydroxide/methanol’. Fuel 7:1117–1124

    Google Scholar 

  • Alam HG, Moghaddam AZ, Omidkhah MR (2009) The influence of process parameters on desulfurization of mezino coal by HNO3/HCl leaching. Fuel Process Technol 1:1–7

    Google Scholar 

  • Ali M, Prakash K, Hossain MA et al (2021) Intelligent energy management: evolving developments, current challenges, and research directions for sustainable future. J Clean Prod 314(5):127904

    Google Scholar 

  • Almenglo F, Bezerra T, Lafuente J et al (2016) Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization. Chemosphere 157:215–223

    CAS  Google Scholar 

  • Bhattacharyya D, Hsieh M, Francis H et al (1990) Biological desulfurization of coal by mesophilic and thermophilic microorganisms. Resour Conserv Recycl 3:81–96

    Google Scholar 

  • Boniek D, Figueiredo D, dos Santos AFB et al (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Techn Environ Policy 17:29–37

    Google Scholar 

  • Boogerd FC, Bos P, Kuenen JG et al (1990) Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: a case study related to the microbial desulfurization of coal. Biotechnol Bioeng 35(11):1111–1119

    CAS  Google Scholar 

  • Bressler DC, Fedorak PM (2001) Purification, stability, and mineralization of 3-hydroxy-2- formylbenzothiophene, a metabolite of dibenzothiophene. Appl Environ Microbiol 67(2):821–826

    CAS  Google Scholar 

  • Brown BP, Brown SR, Senko JM (2012) Microbial communities associated with wet flue gas desulfurization systems. Front Microbiol 3:412

    Google Scholar 

  • Calkins WH (1994) The chemical forms of sulfur in coal: a review. Fuel 73(4):475–484

    CAS  Google Scholar 

  • Castorena G, Suarez C, Valdez I et al (2002) Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp strains. FEMS Microbiol Lett 215:157–161

    CAS  Google Scholar 

  • Charutawai K, Ngamprasertsith S, Prasassarakich P (2003) Supercritical desulfurization of low rank coal with ethanol/KOH. Fuel Process Technol 1:207–216

    Google Scholar 

  • Chen SQ, Zhao CC, Liu QY et al (2018) Thermophilic biodesulfurization and its application in oil desulfurization. Appl Microbiol Biotechnol 102:9089–9103

    CAS  Google Scholar 

  • Denome SA, Oldfield C, Nash LJ et al (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176(21):6707–6716

    CAS  Google Scholar 

  • Desloover J, Vrieze JD, Vijver M et al (2015) Electrochemical nutrient recovery enables ammonia toxicity control and biogas desulfurization in anaerobic digestion. Environ Sci Technol 49(2):948–955

    CAS  Google Scholar 

  • Dorado-Morales P, Martinez I, Rivero-Buceta V et al (2021) Elevated c-di-GMP levels promote biofilm formation and biodesulfurization capacity of Rhodococcus erythropolis. Microb Biotechnol 14:923–937

    CAS  Google Scholar 

  • Du H, Li B, Brown MA et al (2015) Expanding and shifting trends in carbon market research: a quantitative bibliometric study. J Clean Prod 103:104–111

    Google Scholar 

  • Duan Z, Bian H, Gao Z et al (2019) Green fuel desulfurization with β-cyclodextrin aqueous solution for thiophenic sulfides by molecular inclusion. Energy Fuel 33(10):9690–9701

    CAS  Google Scholar 

  • Furuya T, Kirimura K, Kino K et al (2001) Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1. FEMS Microbiol Lett 204:129–133

    CAS  Google Scholar 

  • Gai Z, Yu B, Li L et al (2007) Cometabolic degradation of dibenzofuran anddibenzothiophene by a newly isolated carbazole -degrading Sphingomonas sp strain. Appl Environ Microbiol 73(9):2832–2838

    CAS  Google Scholar 

  • Gallagher JR, Olson ES, Stanley DC (1993) Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36

    CAS  Google Scholar 

  • Ge T, Cai C, Min F et al (2021) Effects of temperature and frequency on the dielectric properties of thiophene compounds and its application in coal microwave-assisted desulfurization. Fuel 301(1):121089

    CAS  Google Scholar 

  • Gou Z, Luo M, Li X (2003) Desulfurization metabolite of Rhodococcus erythropolis LSSE8-1 and its related desulfurizational gene fragments. Chin Sci Bull 28(24):2703–2709

    Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko GT et al (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14(13):1705–1709

    CAS  Google Scholar 

  • Grossman MJ, Lee MK, Prince RC et al (1999) Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65(1):181–188

    CAS  Google Scholar 

  • Guo Y, Wei X, Zhang S (2020) Simultaneous removal of organics, sulfide and ammonium coupled with electricity generation in a loop microbial fuel cell system. Bioresour Technol 305(14):123082

    CAS  Google Scholar 

  • Gupta N, Roychoudhury PK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366

    CAS  Google Scholar 

  • Gürü M (2007) Oxidative desulfurization of askale coal by nitric acid solution. Energy sources. Part A. Recovery Util Environ Effects 29(5):463–469

    Google Scholar 

  • Hartdegen FJ, Coburn JM, Roberts RL (1984) Microbial desulfurization of petroleum. Chem Eng Prog 80(5):63–67

    CAS  Google Scholar 

  • He J, Cai Z, Zhang Y et al (2019) Effects of energy source on bioleaching of vanadium-bearing shale by Acidithiobacillus ferrooxidans. Biochem Eng J 151:107355

    CAS  Google Scholar 

  • Ishii Y, Jin K, Okada H et al (2000) Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem Biophys Res Commun 270(1):81–88

    CAS  Google Scholar 

  • Jorjani E, Rezai B, Vossoughi M, Osanloo M, Abdollahi M (2004) Oxidation pretreatment for enhancing desulfurization of coal with sodium butoxide. Miner Eng 4:545–552

    Google Scholar 

  • Jorjani E, Chelgani SC, Mesroghli SH (2008) Application of artifificial neural networks to predict chemical desulfurization of Tabas coal. Fuel 12:2727–2734

    Google Scholar 

  • Kasavan S, Yusoff S, Fakri M et al (2021) Plastic pollution in water ecosystems: a bibliometric analysis from 2000 to 2020. J Clean Prod 313:127946

    Google Scholar 

  • Kaufman EN, Harkins JB, Rodriguez M et al (1997) Development of an electro-spray bioreactor for crude oil processing. Fuel Process Technol 52(1/3):127–144

    CAS  Google Scholar 

  • Kilbane JJ (1989) Desulfurization of coal: the microbial solution. Trends Biotechnol 7(4):97–101

    CAS  Google Scholar 

  • Kilbane JJ, Jackowski K (1992) Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol Bioeng 40(9):1107–1114

    CAS  Google Scholar 

  • Kobayashi M, Horiuchi K, Yoshikawa O et al (2001) Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes. Biosci Biotech Bioch 65(2):298–304

    CAS  Google Scholar 

  • Kodama K, Nakatani S, Umehara K et al (1970) Stoichiometry. Part III. Isolation and identification of products from dibenzothiophene. Agric Biol Chem 34:1320–1324

    CAS  Google Scholar 

  • Kodama K, Umehara K, Shimuza K et al (1973) Identification bacterial growth on substituted thiophenes of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37:45–50

    CAS  Google Scholar 

  • Konishi J, Onaka T, Ishii Y et al (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63:3164–3169

    CAS  Google Scholar 

  • Konishi J, Onaka T, Ishii Y et al (2000) Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol Lett 187(2):151–154

    CAS  Google Scholar 

  • Kuang YC, Cai SS, Zhang LC et al (2022) Transformation behaviour of pyrite during microwave desulfurization from coal: phase and structural change of Fe-S compounds. Fuel 316:123284

    CAS  Google Scholar 

  • Lee YB, Bigham JM, Dick WA et al (2008) Impact of flue gas desulfurization-calcium sulfite and gypsum on soil microbial activity and wheat growth. Soil Sci 173(8):534–543

    CAS  Google Scholar 

  • Li F, Xu P, Ma C et al (2003a) Biodesulfurization of dibenzothiophene by a newly isolated Bacterium Mycobacterium sp. X7B. J Chem Eng Japan 36(10):1174–1177

    CAS  Google Scholar 

  • Li FL, Xu P, Ma CQ et al (2003b) Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 142:65–70

    Google Scholar 

  • Li F, Xu P, Feng J et al (2005) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71(1):276–281

    CAS  Google Scholar 

  • Li W, Zhao QL, Liu H (2009) Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization-denitrification process. J Hazard Mater 162:848–853

    CAS  Google Scholar 

  • Li XY, Zhu JL, Yang XR et al (2012) Research progress on biogas purification by microorganism. Environ Sci Technol 35:135–140

    CAS  Google Scholar 

  • Li J, Goerlandt F, Reniers G (2021) An overview of scientometric mapping for the Safety Science community: methods, tools, and processes. Saf Sci 134:105093

    Google Scholar 

  • Lin S, Mackey HR, Hao T et al (2018) Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities. Water Res 143:399–415

    CAS  Google Scholar 

  • Lin S, Liu R, Li W et al (2020) Clean desulfurization of sulfurrich tungsten concentrates by reverse flotation[J]. J Clean Prod 244:118876

    CAS  Google Scholar 

  • Liu F, Lei Y, Shi J et al (2019) Effect of microbial nutrients supply on coal bio-desulfurization. J Hazard Mater 384:121324

    Google Scholar 

  • Liu J, Wang Z, Qiao ZQ et al (2020a) Evaluation on the microwave-assisted chemical desulfurization for organic sulfur removal. J Clean Prod 267:121878

    CAS  Google Scholar 

  • Liu H, Hong R, Xiang C et al (2020b) Visualization and analysis of mapping knowledge domains for spontaneous combustion studies. Fuel 262:116598

    CAS  Google Scholar 

  • Liu H, Chen H, Hong R et al (2020c) Mapping knowledge structure and research trends of emergency evacuation studies. Safety Sci 121:348–361

    Google Scholar 

  • Lo WH, Yang HY, Wei GT (2003) One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids. Green Chem 5(5):639–642

    CAS  Google Scholar 

  • Lu AH (2004) Environmental properties of minerals and contaminants purified by the mineralogical method. Acta Geologica Sinica - English Edition 78:191–202

    Google Scholar 

  • Lu G, Kim H, Yuan J et al (1998) Experimental study on self-desulfurization characteristics of biobriquette in combustion. Energy Fuel 12(4):689–696

    CAS  Google Scholar 

  • Luo M, Gou Z, Xing J et al (2003a) Microbial desulfurization of modeland straight-run diesel oils. J Chem Technol Biotechnol 78(8):873–876

    CAS  Google Scholar 

  • Luo MF, Xing JM, Gou ZX et al (2003b) Microbial desulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene in dodecane and straight-run diesel oil. Korean J Chem Eng 20:702–704

    CAS  Google Scholar 

  • Mahmood Q, Zheng P, Cai J et al (2007) Anoxic sulfide biooxidationusing nitrite as electron acceptor. J Hazard Mater 147:249–256

    CAS  Google Scholar 

  • Malik KA (1977) Metbaolism of dibenzothiophene by a Be-jierinekia species. Appl Environ Microbiol 34(6):783–790

    Google Scholar 

  • Marco A, Silvia L, Elena Z et al (2011) Burkholderia fungorum DBTl: a promising bacterialstrain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett 319(1):11–18

    Google Scholar 

  • Marland S, Merchant A, Rowson N (2001) Dielectric properties of coal. Fuel 80(13):1839–1849

    CAS  Google Scholar 

  • Martzoukou O, Amillis S, Glekas PD et al (2023) Advancing desulfurization in the model biocatalyst Rhodococcus qingshengii IGTS8 via an in locus combinatorial approach. Appl Environ Microbiol. https://doi.org/10.1128/aem.01970-22

  • Merigó JM, Miranda J, Modak NM et al (2019) Forty years of safety science: a bibliometric overview. Saf Sci 115:66–88

    Google Scholar 

  • Ministry of Ecology and Environment of the People’s Republic of China (MEEPRC) (2002) Eleventh five-year plan of national environmental protection. China Environmental Science Press

    Google Scholar 

  • Mishra S, Panda S, Pradhan N et al (2017) Insights into DBT biodegradation by a native Rhodococcus strain and its sulphur removal efficacy for two Indian coals and calcined pet coke. Int Biodeterior Biodegrad 120:124–134

    CAS  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546

    CAS  Google Scholar 

  • Ngabe B, Finch JA (2014) Self-heating activation energy and specific heat capacity of sulphide mixtures at low temperature. Miner Eng 55:154–161

    CAS  Google Scholar 

  • Ngabe B, van der Spuy JE, Finch JA (2011) Estimating activation energy from a sulfide self-heating test. Miner Eng 24:1645–1650

    CAS  Google Scholar 

  • Nidhi G, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66(4):356–366

    Google Scholar 

  • Nuhu AA (2013) Bio-catalytic desulfurization of fossil fuels: a mini review. Rev Environ Sci Biotechnol 12(1):9–23

    CAS  Google Scholar 

  • Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Bioscience. Biotechnol Biochem 63(1):1–9

    CAS  Google Scholar 

  • Ohshiro T, Hine Y, Izumi Y (1994) Enzymatic desulfurization of dibenzothiophene by a cell free system of Rhodococcus-erythropolis D-1. FEMS Microbiol Lett 118:341–344

    CAS  Google Scholar 

  • Omori T, Monna L, Saiki Y et al (1992) Desulfurization of dibenzothiophene by Corynebacterium sp. Strain SY1. Appl Environ Microbiol 58:911–915

    CAS  Google Scholar 

  • Osorio F, Torres JC (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34(10):2164–2171

    CAS  Google Scholar 

  • Pan SY, Wang P, Chen Q et al (2017) Development of high-gravity technology for removing particulate and gaseous pollutant emissions: principles and applications. J Clean Prod 149:540–556

    CAS  Google Scholar 

  • Pan W, Yang LR, Jin HM et al (2022) Experimental study on microbial desulphurization of sulfide ores and self-heating simulation of ore heaps under ultrasonic and microwave. Process Saf Environ Prot 164:435–448

    CAS  Google Scholar 

  • Pandey RA, Malhotra S (1999) Desulfurization of gaseous fuels with recovery of elemental sulfur: an overview. Crit Rev Environ Sci Technol 29(3):229–268

    CAS  Google Scholar 

  • Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp strain IGTS8. Appl Environ Microbiol 61:468–475

    CAS  Google Scholar 

  • Pokorna D, Zabranska J (2015) Sulfur-oxidizing bacteria in environmental technology. Biotechnol Adv 33:1246–1259

    CAS  Google Scholar 

  • Rai C (1985) Microbial desulfurization of coals in a slurry pipeline reactor using thiobacillusferrooxidans. Biotechnol Prog 1(3):200–204

    CAS  Google Scholar 

  • Rattanapan C, Kantachote D, Rong Y et al (2010) Hydrogen sulfide removal using granular activated carbon biofiltration inoculated with Alcaligenes faecalis T307 isolated from concentrated latex wastewater. Int Biodeterior Biodegradation 64(5):383–387

    CAS  Google Scholar 

  • Rhee SK, Chang JH, Chan YK et al (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331

    CAS  Google Scholar 

  • Rosenblum F, Spira P (1995) Evaluation of hazard from self-heating of sulphide rock. CIM Bull 88:44–49

    CAS  Google Scholar 

  • Ryu HW, Chang YK, Sang DK (1993) Microbial coal desulfurization in an airlift bioreactor by sulfur-oxidizing bacterium thiobacillus ferrooxidans. Fuel Process Technol 36(1-3):267–275

    CAS  Google Scholar 

  • Sanchez AG, Marquez TEF, Revah S et al (2014) Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization. Biomass Bioenergy 66(7):460–464

    Google Scholar 

  • Shan G, Luo M, Li X (2003) Immobilization of Pseudomonas delafieldii with mangnetic polyvinyl alcoholbeads and its application in biodesulfurization. Biotechnol Lett 25:1981–1997

    Google Scholar 

  • Shan GB, Xing JM, Zhang HY et al (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502

    CAS  Google Scholar 

  • Sharma R, Mishra DK (2021) An analysis of thematic structure of research trends in occupational health and safety concerning safety culture and environmental management. J Clean Prod 281:125346

    Google Scholar 

  • Shen Y, Wang M, Hu Y et al (2019) Transformation and regulation of sulfur during pyrolysis of coal blend with high organic-sulfur fat coal. Fuel. 249:427–433

    CAS  Google Scholar 

  • Shujiro O, Takeshi N, Noriko T et al (2000) Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuel 14:1232–1239

    Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25(6):570–596

    CAS  Google Scholar 

  • Song C, Ma X (2003) New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl Catal B Environ 41(1-2):207–238

    Google Scholar 

  • Song J, Zhu L, Shi X et al (2019) Reversible SO2 removal from simulated flue gas by ion exchange membranes using the humidity-swing. Energy Fuel 33(11):10953–10958

    CAS  Google Scholar 

  • Sun T, Shen Y, Jia J (2018) Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer. Environ Sci Technol 48(4):2263–2272

    Google Scholar 

  • Tang JH, Feng YX, Wu ZL et al (2021) Optimization studies on biological desulfurization of sulfide ore using response surface methodology. Minerals 11:583

    CAS  Google Scholar 

  • Tao X, Ning X, Xie M et al (2014) Progress of the technique of coal microwave desulfurization. Int J Coal Sci Technol 1(1):113–128

    Google Scholar 

  • The Standing Committee of the National People”s Congress (SCNPC), Production Safety Law of PRC (2002) The 28th session of the standing committee of the ninth National People’s Congress

  • The Standing Committee of the National People”s Congress (SCNPC), Production Safety Law of PRC (2014) The 10th session of the standing committee of the twelfth National People’s Congress

  • Tripathi N, Singh RS, Hills CD (2018) Microbial removal of sulphur from petroleum coke (petcoke). Fuel 235:1501–1505

    Google Scholar 

  • Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Review on recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Google Scholar 

  • Vella PA (1997) Improved cleaning method safely removes pyrophoric iron sulfide. Oil Gas J 95(8):65–68

    CAS  Google Scholar 

  • Wang MD, Li W, Wang DH (2003) The behaviro ofdesulfurization of dibenzothiophene by Corynebacteriumsp.ZD-1 in aqueous phase. J Environ Sci (IOS Press):513–519

  • Wang YC, Wang DY, Jiang YT et al (2013a) FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew Chem Int Ed 52(26):6694–6698

    CAS  Google Scholar 

  • Wang HJ, Xu CS, Wu AX et al (2013b) Inhibition of spontaneous combustion of sulfide ores by thermopile sulfide oxidation. Minerals Eng 49:61–67

    Google Scholar 

  • Wang Y, Wang Z, Liang F et al (2021) Application of flue gas desulfurization gypsum improves multiple functions of saline-sodic soils across China. Chemosphere 277:130345

    CAS  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations Catalyzed by the Genus Rhodococcus. Crit Rev Biotechnol 14(1):29–73

    CAS  Google Scholar 

  • Williamson AL, Caron F, Spiers G (2014) Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples. J Environ Radioact 138:308–314

    CAS  Google Scholar 

  • Xu Y, Liu Y, Bu Y et al (2020a) Review on the ionic liquids affecting the desulfurization of coal by chemical agents. J Clean Prod 284(5):124788

    Google Scholar 

  • Xu XJ, Li HJ, Wang W et al (2020b) The performance of simultaneous denitrification and biogas desulfurization system for the treatment of domestic sewage. Chem Eng J 399:125855

    CAS  Google Scholar 

  • Xue J, Reniers G, Li J et al (2021) A bibliometric and visualized overview for the evolution of process safety and environmental protection. Int J Environ Res Public Health 18(11):5985

    Google Scholar 

  • Yang FQ, Lai Y, Song YZ (2019a) Determination of the influence of pyrite on coal spontaneous combustion by thermodynamics analysis. Process Safety Environ Protect 129:163–167

    CAS  Google Scholar 

  • Yang YF, Reniersb G, Chen GH et al (2019b) A bibliometric review of laboratory safety in universities. Safety Sci 120:14–24

    Google Scholar 

  • Yang YF, Chen GH, Reniers G et al (2020) A bibliometric analysis of process safety research in China: understanding safety research progress as a basis for making China's chemical industry more sustainable. J Clean Prod 263:121433

    CAS  Google Scholar 

  • Yang FQ, Li X, Ge FL et al (2022) Dust prevention and control in China: a systematic analysis of research trends using bibliometric analysis and Bayesian network. Powder Technol 411:117941

    CAS  Google Scholar 

  • Yang FQ, Guo Y, Lai Y et al (2023) Kinetic analysis of thermal decomposition process of emulsion explosive matrix in the presence of sulfide ores. Sustainability 14(18):11614

    Google Scholar 

  • Ye J, Wang S, Zhang P et al (2020) L-cysteine addition enhances microbial surface oxidation of coal inorganic sulfur: complexation of cysteine and pyrite, inhibition of jarosite formation, environmental effects. Environ Res 187:109705

    CAS  Google Scholar 

  • Yin SH, Wu AX, Liu JZ et al (2011) An experimental study of pyrite bio-leaching as a way to control spontaneous combustion. Mining Sci Technol (China) 21:513–517

    CAS  Google Scholar 

  • Yong Z, Xiao L, Zhang X et al (2018) Biogas desulfurization under anoxic conditions using synthetic wastewater and biogas slurry. Int Biodeterior Biodegrad 133:247–255

    Google Scholar 

  • Yu B, Ma CQ, Zhou WJ et al (2006a) Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiol Lett 258:284–289

    CAS  Google Scholar 

  • Yu B, Xu P, Shi Q et al (2006b) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72(1):54–58

    CAS  Google Scholar 

  • Zeng Y, Xiao LF, Zhang XY et al (2018) Biogas desulfurization under anoxic conditions using synthetic wastewater and biogas slurry. Int Biodeterior Biodegrad 133:247–255

    CAS  Google Scholar 

  • Zhang J, Li L, Liu J et al (2016) Temporal variation of microbial population in acclimation and start-up period of a thermophilic desulfurization biofilter. Int J Therm Sci 109:157–164

    CAS  Google Scholar 

  • Zhang B, Yan G, Zhao Y et al (2017) Coal pyrite microwave magnetic strengthening and electromagnetic response in magnetic separation desulfurization process. Int J Miner Process 168:136–142

    CAS  Google Scholar 

  • Zhang B, Zhu G, Sun Z et al (2018) Fine coal desulfurization and modeling based on high-gradient magnetic separation by microwave energy. Fuel 217:434–443

    CAS  Google Scholar 

  • Zhang Y, Chen Z, Liu X et al (2020) Efficient SO2 removal using a microporous metal-organic framework with molecular sieving effect. Ind Eng Chem Res 59(2):874–882

    CAS  Google Scholar 

  • Zhang T, Zhang JT, Wang Z et al (2021) Review of electrochemical oxidation desulfurisation for fuels and minerals. Fuel 305:121562

    CAS  Google Scholar 

  • Zou Y, Liu X, Zhu T et al (2019) Simultaneous removal of NOx and SO2 by MgO combined with O3 oxidation: the influencing factors and O3 consumption distributions. ACS Omega 4(25):21091–21099

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52274181, 51874100).

Author information

Authors and Affiliations

Authors

Contributions

XL: methodology and writing—original draft preparation. FY: conceptualization, resources, writing—reviewing and editing, and supervision. JZ: supervision and writing—reviewing and editing. FG: investigation and writing—reviewing and editing.

Corresponding author

Correspondence to Fuqiang Yang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors have confirmed their participation.

Consent for publication

All authors agree to publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, F., Zhao, J. et al. Mapping the knowledge domain of microbial desulfurization application in fuels and ores for sustainable industry. Environ Sci Pollut Res 30, 113151–113174 (2023). https://doi.org/10.1007/s11356-023-30236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30236-x

Keywords

Navigation