Skip to main content

Advertisement

Log in

PCM-based hybrid thermal management system for photovoltaic modules: A comparative analysis

  • Application of Phase Change Materials in Solar Energy Systems
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Proper temperature regulation of photovoltaic (PV) modules increases their performance. Among various cooling techniques, phase change materials (PCMs) represent an effective thermal management route, thanks to their large latent heat at constant temperatures. Radiative cooling (RC) is also recently explored as a passive option for PV temperature regulation. In this paper, a heat sink (HS), phase change materials, and radiative cooling are integrated with photovoltaic modules to achieve low and uniform temperature distribution along the PV module and improved performance. Eight different combinations are considered for the proposed system, including HS, PCM, and RC, and their various combinations. The PCM is selected according to the environmental conditions of the selected location. A comprehensive 2-D model is developed and analyzed in COMSOL-Multiphysics software by solving the governing equations using the finite element method. The performance analysis is carried out for the climatic conditions of the Atacama Desert, having high solar radiation and ambient temperature. The effects of PCM height, ambient temperature, wind velocity, and solar radiation on the performance of the proposed system are studied. The performance of eight different configurations is also compared. The maximum reductions in PV temperature, maximum PV power, and a minimum drop in PV conversion efficiency are observed to be 22 oC, 152 W, and 14% using a combined heat sink and radiative cooling systems, among all other configurations. The findings of this study can be used to select the best PV cooling method among different configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data are given in the manuscript.

Abbreviations

A :

Area (m2)

c p :

Specific heat capacity (J/kg K)

c 0 :

Speed of light (m/s)

c 2 :

Constant

e :

Emissive power (W/m2)

E :

Energy (J)

F ext :

External incident radiation

FEP i :

Fractional blackbody emissive power

\({\overrightarrow{F}}_{B}\) :

Buoyancy term vector

g :

Gravitational acceleration (m/s2)

G :

Solar radiation (W/m2)

h P :

Planck constant (J s)

h :

Sensible enthalpy (J/kg)

h c :

Convective heat transfer coefficient (W/m2K)

H :

Enthalpy (J/kg)

J :

Radiosity (W/m2)

k :

Thermal conductivity (W/mK)

k b :

Boltzmann constant (J/K)

L :

Latent heat of fusion (J/kg)

n :

Unit vector

P :

Pressure (Pa)

Pr:

Prandtl number

q :

Heat flux (W/m2)

q i :

Internal heat generation per unit volume (W/m3)

Re:

Reynolds number

\(\overrightarrow{S}\) :

Source term vector

t :

Time

T :

Temperature (K)

u :

Velocity component in the x-direction (m/s)

V :

Volume (m3/s)

v :

Velocity component in the y-direction (m/s)

V p :

Velocity of solidified mass dragged out of computation domain (m/s)

\(\overrightarrow{V}\) :

Velocity vector

α :

Absorptivity

α s :

Thermal diffusivities of solid (m2/s)

α l :

Thermal diffusivities of liquid (m2/s)

β :

Thermal expansion coefficient or temperature coefficient of efficiency (K−1)

δ :

Small number (10−3)

σ :

Stefan-Boltzmann constant (W/m2K4)

ε :

Surface emissivity factor

λ :

Liquid fraction

ρ :

Density (kg/m3)

ρ d :

Reflectivity

μ :

Dynamic viscosity (kg/ms)

θ :

Inclination angle

ƞ :

Efficiency

τ :

Transmissivity

amb:

Ambient

b:

Blackbody

e:

Electrical

i :

i-Th layer

l:

Liquid phase

m:

Melting

pcm:

Phase change material

PV:

Photovoltaic

p:

Constant pressure

ref:

Reference

s:

Solid phase

sun:

Sun

x :

x Direction

y :

y Direction

CPV:

Concentrated photovoltaic

HS:

Heat sink

LHSCS:

Latent heat storage and cooling system

PV/T:

Photovoltaic/thermal

PCM:

Phase change material

PV:

Photovoltaic

RC:

Radiative cooling

TEG:

Thermoelectric generator

References

  • Abdul-Ganiyu S, Quansah DA, Ramde EW, Seidu R, Adaramola MS (2021) Study effect of flow rate on flat-plate water-based photovoltaic-thermal (PVT) system performance by analytical technique. J Clean Prod 321:128985

    Article  Google Scholar 

  • Ahmad FF, Ghenai C, Hamid AK, Rejeb O, Bettayeb M (2021) Performance enhancement and infrared (IR) thermography of solar photovoltaic panel using back cooling from the waste air of building centralized air conditioning system, Case Stud. Therm Eng 24:1–12

    Google Scholar 

  • Ahmed S, Li Z, Ma T, Javed MS, Yang H (2021) A comparative performance evaluation and sensitivity analysis of a photovoltaic-thermal system with radiative cooling. Sol Energy Mater Sol Cells 1(221):110861

    Article  Google Scholar 

  • Ahmed S, Li S, Li Z, Xiao G, Ma T (2022) Enhanced radiative cooling of solar cells by integration with heat pipe. Appl Energy 15(308):118363

    Article  Google Scholar 

  • Ali AYM, Abo-Zahhad EM, Elqady HI, Rabie M, Elkady MF, Ookawara S, ElShazly AH, Radwan A (2021) Thermal analysis of high concentrator photovoltaic module using convergentdivergent microchannel heat sink design. Appl Therm Eng 183:116201

    Article  Google Scholar 

  • An Y, Sheng C, Li X (2019) Radiative cooling of solar cells: opto-electro-thermal physics and modeling. Nanoscale 11(36):17073–17083

    Article  CAS  Google Scholar 

  • Bahaidarah HMS, Baloch AAB, Gandhidasan P (2016) Uniform cooling of photovoltaic panels: a review. Renew Sustain Energy Rev 57:1520–1544. https://doi.org/10.1016/j.rser.2015.12.064

    Article  Google Scholar 

  • Bhuiya R, Shah N, Arora D, Krishna NV, Manikandan S, Selvam C, Lamba R (2022) Thermal management of phase change material integrated thermoelectric cooler with different heat sink geometries. J Energy Storage 51:104304

  • Bicer Y, Sajid MU, Al-Breiki M (2022) Optimal spectra management for self-power producing greenhouses for hot arid climates. Renew Sustain Energy Rev 159:112194

    Article  CAS  Google Scholar 

  • Chandel SS, NagarajuNaik M, Sharma V, Chandel R (2015) Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India. Renew Energy 78:193–202. https://doi.org/10.1016/j.renene.2015.01.015

    Article  CAS  Google Scholar 

  • Chen H, Yang J, Zhou N, Chen J, Zhang Y (2019) Performance analysis of a high concentrating photovoltaic/thermal system with a water spray cooling device. IOP Conf Ser Mater Sci Eng 556:1. https://doi.org/10.1088/1757-899X/556/1/012034

    Article  Google Scholar 

  • COMSOL Multiphysics (2022) The radiosity method for diffuse-gray surfaces. Retrieved October 27, 2022, from https://doc.comsol.com/6.0/docserver/#!/com.comsol.help.heat/heat_ug_theory.07.47.html?highlight=radiosity

  • COMSOL Multiphysics (2023a) Heat transfer coefficients — external forced convection. Retrieved March 20, 2023, from https://doc.comsol.com/6.0/docserver/#!/com.comsol.help.heat/heat_ug_theory.07.83.html

  • COMSOL Multiphysics (2023b) Comsol documentation. Retrieved March 20, 2023, from https://doc.comsol.com/6.0/docserver/#!/com.comsol.help.comsol/helpdesk/helpdesk.html

  • De Lucia M, Bejan A (1990) Thermodynamics of energy storage by melting due to conduction or natural convection. ASME J Sol Energy Eng 112(2):110–116. https://doi.org/10.1115/1.2929642

    Article  Google Scholar 

  • Du D, Darkwa J, Kokogiannakis G (2013) Thermal management systems for photovoltaics (PV) installations: a critical review. Sol Energy 97:238–254. https://doi.org/10.1016/j.solener.2013.08.018

    Article  CAS  Google Scholar 

  • Elqady HI, El-Shazly AH, Elkady MF (2022) Parametric study for optimizing double-layer microchannel heat sink for solar panel thermal management. Sci Rep 12(1):1–9

    Article  Google Scholar 

  • Ewe WE, Fudholi A, Sopian K, Moshery R, Asim N, Nuriana W, Ibrahim A (2022) Thermo-electro- hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector. Energy 254:124366

    Article  Google Scholar 

  • Javidan M, Moghadam AJ (2021) Experimental investigation on thermal management of a photovoltaic module using water-jet impingement cooling. Energy Convers Manag 228:113686

    Article  Google Scholar 

  • Jidhesh P, Arjunan TV, Gunasekar N (2021) Thermal modeling and experimental validation of semitransparent photovoltaic- thermal hybrid collector using CuO nanofluid. J Clean Prod 316:128360

    Article  CAS  Google Scholar 

  • Khanna S, Reddy KS, Mallick TK (2018) Effect of climate on electrical performance of finned phase change material integrated solar photovoltaic. Sol Energy 1(174):593–605

    Article  Google Scholar 

  • Khanna S, Newar S, Sharma V, Reddy KS, Mallick TK, Radulovic J, Khusainov R, Hutchinson D, Becerra V (2019) Electrical enhancement period of solar photovoltaic using phase change material. J Clean Prod 1(221):878–884

    Article  Google Scholar 

  • Kumar R, Montero FJ, Lamba R, Vashishtha M, Upadhyaya S (2023) Thermal management of photovoltaic-thermoelectric generator hybrid system using radiative cooling and heat pipe. Appl Therm Eng 227:120420

  • Lamba R, Kaushik SC (2018) Solar driven concentrated photovoltaic-thermoelectric hybrid system: numerical analysis and optimization. Energy Convers Manag 170:34–49

    Article  Google Scholar 

  • Lamba R, Zeyghami M, Young D, Goswami DY, Kaushik SC (2018) Thermal modeling of a building integrated radiative cooler for space cooling applications. In: ASME International Mechanical Engineering Congress and Exposition, vol 52071. American Society of Mechanical Engineers, Pittsburgh, Pennsylvania, p V06AT08A047

  • Lamrani B, Draoui A, Kuznik F (2021) Thermal performance and environmental assessment of a hybrid solar-electrical wood dryer integrated with photovoltaic/thermal air collector and heat recovery system. Sol Energy 221:60–74

    Article  Google Scholar 

  • Li Z, Ahmed S, Ma T (2021) Investigating the effect of radiative cooling on the operating temperature of photovoltaic modules. Solar RRL 5(4):2000735

    Article  Google Scholar 

  • Lorenzi B, Acciarri M, Narducci D (2015) Analysis of thermal losses for a variety of single-junction photovoltaic cells: an interesting means of thermoelectric heat recovery. J Electron Mater 44:1809–1813. https://doi.org/10.1007/s11664-014-3562-y

    Article  CAS  Google Scholar 

  • Mahdi JM, Singh RP, Al-Najjar HM, Singh S, Nsofor EC (2021) Efficient thermal management of the photovoltaic/phase change material system with innovative exterior metal-foam layer. Sol Energy 1(216):411–427

    Article  Google Scholar 

  • Manikandan S, Selvam C, Poddar N, Pranjyal K, Lamba R, Kaushik SC (2019) Thermal management of low concentrated photovoltaic module with phase change material. J Clean Prod 219:359–367

    Article  Google Scholar 

  • Manikandan S, Selvam C, Pavan Sai Praful P, Lamba R, Kaushik SC, Zhao D, Yang R (2020) A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials. J Therm Anal Calorim 140:1003–1014

    Article  CAS  Google Scholar 

  • Montero FJ, Lamba R, Ortega A, Jahn W, Guzmán AM (2021) A novel 24-h day-night operational solar thermoelectric generator using phase change materials. J Clean Prod 10(296):126553

    Article  Google Scholar 

  • Montero FJ, Lamba R, Ortega A, Jahn W, Chen W-H, Guzmán AM (2023) A bidirectional solar thermoelectric generator combining heat storage for daytime and nighttime power generation. Appl Thermal Eng 224:119997, ISSN 1359–4311, https://doi.org/10.1016/j.applthermaleng.2023.119997

  • Nasef HA, Nada SA, Hassan H (2019) Integrative passive and active cooling system using PCM and nanofluid for thermal regulation of concentrated photovoltaic solar cells. Energy Convers Manag 1(199):112065

    Article  Google Scholar 

  • Nižetić S, Papadopoulos AM, Giama E (2017) Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques. Energy Convers Manag 149:334–354. https://doi.org/10.1016/j.enconman.2017.07.022

    Article  Google Scholar 

  • Nižetić S, Giama E, Papadopoulos AM (2018) Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, part II: active cooling techniques. Energy Convers Manag 155:301–323. https://doi.org/10.1016/j.enconman.2017.10.071

    Article  Google Scholar 

  • Puretemp (2021) PURETEMP 29 TECHNICAL DATA SHEET. Retrieved May 3, 2021, from https://www.puretemp.com/stories/puretemp-29-tds

  • Qasim MA, Ali HM, Khan MN, Arshad N, Khaliq D, Ali Z, Janjua MM (2020) The effect of using hybrid phase change materials on thermal management of photovoltaic panels–an experimental study. Sol Energy 1(209):415–423

    Article  Google Scholar 

  • Radwan A, Ahmed M (2018) Thermal management of concentrator photovoltaic systems using microchannel heat sink with nanofluids. Sol Energy 1(171):229–246

    Article  Google Scholar 

  • Rehman TU, Ali HM (2018) Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transfer 1(98):155–162

    Article  Google Scholar 

  • Rehman TU, Ali HM (2020) Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling. J Therm Anal Calorim 140:979–990

    Article  CAS  Google Scholar 

  • Rejeb O, Lamrani B, Lamba R, Kousksou T, Salameh T, Jemni A, Hamid AK, Bettayeb M, Ghenai C (2023) Numerical investigations of concentrated photovoltaic thermal system integrated with thermoelectric power generator and phase change material. J Energy Storage 62:106820

  • Sajid MU, Ali HM, Bicer Y (2022) Exergetic performance assessment of magnesium oxide–water nanofluid in corrugated minichannel heat sinks: an experimental study. Int J Energy Res 46(8):9985–10001

    Article  CAS  Google Scholar 

  • Shafiq MB, Allauddin U, Qaisrani MA, Tauseef-ur-Rehman, Ahmed N, Mushtaq MU, Ali HM (2022) Thermal performance enhancement of shell and helical coil heat exchanger using MWCNTs/water nanofluid. J Therm Anal Calorim 147(21):12111–26

    Article  Google Scholar 

  • Shahsavar A, Askari IB, Ghodrat M, Arıcı M, Nižetić S, Rehman TU, Ma Z (2023) Experimental investigation of the effect of mechanical vibration and rotating magnetic field on the hydrothermal performance of water-Fe3O4 ferrofluid inside a rifled tube. J Magn Magn Mater 15(572):170586

    Article  Google Scholar 

  • Shahverdian MH, Sohani A, Sayyaadi H (2021) Water-energy nexus performance investigation of water flow cooling as a clean way to enhance the productivity of solar photovoltaic modules. J Clean Prod 312:127641

    Article  Google Scholar 

  • Wahab A, Khan MAZ, Hassan A (2020) Impact of graphene nanofluid and phase change material on hybrid photovoltaic thermal system: exergy analysis. J Clean Prod 277:123370

    Article  CAS  Google Scholar 

  • Yao Z, Yaoguang M, Sabrina ND, Dongliang Z, Runnan L, Gang T, Ronggui Y, Xiaobo Y (2017) Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329):1062–1066

    Article  Google Scholar 

  • Yin E, Li Q (2022) Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection. Renew Energy 193:565–575

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ravita Lamba contributed to conceptualization, visualization, investigation, methodology, writing, reviewing, and editing. Francisco Javier Montero contributed to conceptualization, software, and writing–original draft. Sarveshwar Singh contributed to visualization, methodology and writing, reviewing, and editing. Tauseef-ur-Rehman and Manikandan Sundararaj contributed to reviewing and editing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tauseef-ur Rehman.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The heat sink (HS), PCM, and radiative cooling (RC) are explored for PV thermal management.

• A 2-D model of the PV + PCM + HS + RC system is developed and analyzed in COMSOL Multiphysics software.

• PV performance is analyzed for eight combinations of HS, PCM, and RC.

• The effects of PCM height, ambient temperature, wind velocity, and solar radiation on PV performance are analyzed.

• RC + HS is the best configuration among all other configurations for the desert location.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamba, R., Montero, F.J., Rehman, Tu. et al. PCM-based hybrid thermal management system for photovoltaic modules: A comparative analysis. Environ Sci Pollut Res (2023). https://doi.org/10.1007/s11356-023-27809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-023-27809-1

Keywords

Navigation