Skip to main content

Advertisement

Log in

Fish to learn: insights into the effects of environmental chemicals on eye development and visual function in zebrafish

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Vision is the most essential sense system for the human being. Congenital visual impairment affects millions of people globally. It is increasingly realized that visual system development is an impressionable target of environmental chemicals. However, due to inaccessibility and ethical issues, the use of humans and other placental mammals is constrained, which limits our better understanding of environmental factors on ocular development and visual function in the embryonic stage. Therefore, as complementing laboratory rodents, zebrafish has been the most frequently employed to understand the effects of environmental chemicals on eye development and visual function. One of the major reasons for the increasing use of zebrafish is their polychromatic vision. Zebrafish retinas are morphologically and functionally analogous to those of mammalian, as well as evolutionary conservation among vertebrate eye. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements (ions), metal-derived nanoparticles, microplastics, nanoplastics, persistent organic pollutants, pesticides, and pharmaceutical pollutants on the eye development and visual function in zebrafish embryos. The collected data provide a comprehensive understanding of environmental factors on ocular development and visual function. This report highlights that zebrafish is promising as a model to identify hazardous toxicants toward eye development and is hopeful for developing preventative or postnatal therapies for human congenital visual impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  • Altmann L, Sveinsson K, Krämer U, Weishoff-Houben M, Turfeld M, Winneke G, Wiegand H (1998) Visual functions in 6-year-old children in relation to lead and mercury levels. Neurotoxicol Teratol 20:9–17

    CAS  Google Scholar 

  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    CAS  Google Scholar 

  • Babich R, Van Beneden RJ (2019) Effect of arsenic exposure on early eye development in zebrafish (Danio rerio). J Appl Toxicol 39:824–831

    CAS  Google Scholar 

  • Barbagallo S, Baldauf C, Orosco E, Roy NM (2022) Di-butyl phthalate (DBP) induces defects during embryonic eye development in zebrafish. Ecotoxicology 31:178–185

    CAS  Google Scholar 

  • Baumann L, Ros A, Rehberger K, Neuhauss SC, Segner H (2016) Thyroid disruption in zebrafish (Danio rerio) larvae: different molecular response patterns lead to impaired eye development and visual functions. Aquat Toxicol 172:44–55

    CAS  Google Scholar 

  • Baumann L, Segner H, Ros A, Knapen D, Vergauwen L (2019) Thyroid hormone disruptors interfere with molecular pathways of eye development and function in zebrafish. Int J Mol Sci 20(7):1543

  • Bernardo RC, Connaughton VP (2022) Transient developmental exposure to tributyltin reduces optomotor responses in larval zebrafish (Danio rerio). Neurotoxicol Teratol 89:107055

    CAS  Google Scholar 

  • Bibliowicz J, Tittle RK, Gross JM (2011) Toward a better understanding of human eye disease: Insights from the zebrafish, Danio rerio. Prog Mol Biol Transl Sci 100:287–330

    CAS  Google Scholar 

  • Bridges KN, Magnuson JT, Curran TE, Barker A, Roberts AP, Venables BJ (2019) Alterations to the vision-associated transcriptome of zebrafish (Danio rerio) following developmental norethindrone exposure. Environ Toxicol Pharmacol 69:137–142

    CAS  Google Scholar 

  • Caioni G, Merola C, Bertolucci C, Lucon-Xiccato T, Savaşçı BB, Massimi M, Colasante M, Fioravanti G, Cacciola NA, Ippoliti R, d’Angelo M, Perugini M, Benedetti E (2023) Early-life exposure to environmentally relevant concentrations of triclocarban impairs ocular development in zebrafish larvae. Chemosphere 324:138348

    CAS  Google Scholar 

  • Cassar S, Dunn C, Ramos MF (2021) Zebrafish as an animal model for ocular toxicity testing: a review of ocular anatomy and functional assays. Toxicol Pathol 49:438–454

    CAS  Google Scholar 

  • Chen J, Kong A, Shelton D, Dong H, Li J, Zhao F, Bai C, Huang K, Mo W, Chen S, Xu H, Tanguay RL, Dong Q (2021a) Early life stage transient aristolochic acid exposure induces behavioral hyperactivity but not nephrotoxicity in larval zebrafish. Aquat Toxicol 238:105916

    CAS  Google Scholar 

  • Chen L (2020) Visual system: an understudied target of aquatic toxicology. Aquat Toxicol 225:105542

    CAS  Google Scholar 

  • Chen L, Huang Y, Huang C, Hu B, Hu C, Zhou B (2013) Acute exposure to DE-71 causes alterations in visual behavior in zebrafish larvae. Environ Toxicol Chem 32:1370–1375

    CAS  Google Scholar 

  • Chen X, Qiu T, Xiao P, Li W (2022) Retinal toxicity of isoflucypram to zebrafish (Danio rerio). Aquat Toxicol 243:106073

    CAS  Google Scholar 

  • Chen XF, Chen ZF, Lin ZC, Liao XL, Zou T, Qi Z, Cai Z (2021b) Toxic effects of triclocarban on larval zebrafish: a focus on visual dysfunction. Aquat Toxicol 241:106013

    CAS  Google Scholar 

  • Chhetri J, Jacobson G, Gueven N (2014) Zebrafish–on the move towards ophthalmological research. Eye (lond) 28:367–380

    CAS  Google Scholar 

  • Chow ES, Hui MN, Cheng CW, Cheng SH (2009) Cadmium affects retinogenesis during zebrafish embryonic development. Toxicol Appl Pharmacol 235:68–76

    CAS  Google Scholar 

  • Cowden J, Padnos B, Hunter D, MacPhail R, Jensen K, Padilla S (2012) Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reprod Toxicol 33:165–173

    CAS  Google Scholar 

  • Crowley-Perry M, Barberio AJ, Zeino J, Winston ER, Connaughton VP (2021) Zebrafish optomotor response and morphology are altered by transient, developmental exposure to bisphenol-A. J Dev Biol 9(2):14

  • David A, Pancharatna K (2009) Effects of acetaminophen (paracetamol) in the embryonic development of zebrafish, Danio rerio. J Appl Toxicol 29:597–602

    CAS  Google Scholar 

  • Deeti S, O’Farrell S, Kennedy BN (2014) Early safety assessment of human oculotoxic drugs using the zebrafish visualmotor response. J Pharmacol Toxicol Methods 69:1–8

    CAS  Google Scholar 

  • Dehnert GK, Karasov WH, Wolman MA (2019) 2,4-Dichlorophenoxyacetic acid containing herbicide impairs essential visually guided behaviors of larval fish. Aquat Toxicol 209:1–12

    CAS  Google Scholar 

  • Deveau C, Jiao X, Suzuki SC, Krishnakumar A, Yoshimatsu T, Hejtmancik JF, Nelson RF (2020) Thyroid hormone receptor beta mutations alter photoreceptor development and function in Danio rerio (zebrafish). PLoS Genet 16:e1008869

    CAS  Google Scholar 

  • Dong W, Macaulay LJ, Kwok KW, Hinton DE, Ferguson PL, Stapleton HM (2014) The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos. Endocr Disruptors (Austin) 2014;2(1):e969072

  • Dong W, Muramoto W, Nagai Y, Takehana K, Stegeman JJ, Teraoka H, Hiraga T (2006) Retinal neuronal cell is a toxicological target of tributyltin in developing zebrafish. J Vet Med Sci 68:573–579

    CAS  Google Scholar 

  • Duester G (2022) Towards a better vision of retinoic acid signaling during eye development. Cells 11(3):322

  • Faria M, Garcia-Reyero N, Padrós F, Babin PJ, Sebastián D, Cachot J, Prats E, Arick Ii M, Rial E, Knoll-Gellida A, Mathieu G, Le Bihanic F, Escalon BL, Zorzano A, Soares AM, Raldúa D (2015) Zebrafish models for human acute organophosphorus poisoning. Sci Rep 5:15591

    CAS  Google Scholar 

  • Fillion M, Lemire M, Philibert A, Frenette B, Weiler HA, Deguire JR, Guimarães JR, Larribe F, Barbosa F Jr, Mergler D (2013) Toxic risks and nutritional benefits of traditional diet on near visual contrast sensitivity and color vision in the Brazilian Amazon. Neurotoxicology 37:173–181

    CAS  Google Scholar 

  • Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234

    Google Scholar 

  • Gaaied S, Oliveira M, Barreto A, Zakhama A, Banni M (2022) 2,4-Dichlorophenoxyacetic acid (2,4-D) affects DNA integrity and retina structure in zebrafish larvae. Environ Sci Pollut Res Int 29(56):85402–85412

  • Garg V, Kaur R (2022) Dose and time response study to develop retinal degenerative model of zebrafish with lead acetate. Cutaneous Ocular Toxicol 41(1):11–17

  • Gestri G, Link BA, Neuhauss SC (2012) The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 72:302–327

    Google Scholar 

  • Ghobadian M, Nabiuni M, Parivar K, Fathi M, Pazooki J (2017) Histopathological evaluation of zebrafish (Danio rerio) larvae following embryonic exposure to MgO nanoparticles. Iran J Fish Sci 16(3):959–969

  • Goodale BC, La Du J, Tilton SC, Sullivan CM, Bisson WH, Waters KM, Tanguay RL (2015) Ligand-specific transcriptional mechanisms underlie aryl hydrocarbon receptor-mediated developmental toxicity of oxygenated PAHs. Toxicol Sci 147:397–411

    CAS  Google Scholar 

  • Gu J, Zhang J, Chen Y, Wang H, Guo M, Wang L, Wang Z, Wu S, Shi L, Gu A, Ji G (2019) Neurobehavioral effects of bisphenol S exposure in early life stages of zebrafish larvae (Danio rerio). Chemosphere 217:629–635

    CAS  Google Scholar 

  • Hernandez LM, Yousefi N, Tufenkji N (2017) Are there nanoplastics in your personal care products? Environ Sci Technol Lett 4:280–285

    CAS  Google Scholar 

  • Hu J, Zhang Z, Wei Q, Zhen H, Zhao Y, Peng H, Wan Y, Giesy JP, Li L, Zhang B (2009) Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and its causal agent. Proc Natl Acad Sci USA 106:9339–9344

    CAS  Google Scholar 

  • Huang L, Wang C, Zhang Y, Wu M, Zuo Z (2013) Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. J Hazard Mater 261:172–180

    CAS  Google Scholar 

  • Huang L, Zuo Z, Zhang Y, Wu M, Lin JJ, Wang C (2014) Use of toxicogenomics to predict the potential toxic effect of Benzo(a)pyrene on zebrafish embryos: ocular developmental toxicity. Chemosphere 108:55–61

    CAS  Google Scholar 

  • Hyatt GA, Schmitt EA, Fadool JM, Dowling JE (1996) Retinoic acid alters photoreceptor development in vivo. Proc Natl Acad Sci USA 93:13298–13303

    CAS  Google Scholar 

  • Hyatt GA, Schmitt EA, Marsh-Armstrong NR, Dowling JE (1992) Retinoic acid-induced duplication of the zebrafish retina. Proc Natl Acad Sci USA 89:8293–8297

    CAS  Google Scholar 

  • Jeong J, Choi J (2019) Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere 231:249–255

    CAS  Google Scholar 

  • Jiang Y, Zhang S, Zhang X, Li N, Zhang Q, Guo X, Chi X, Tong M (2019) Peptidomic analysis of zebrafish embryos exposed to polychlorinated biphenyls and their impact on eye development. Ecotoxicol Environ Saf 175:164–172

    CAS  Google Scholar 

  • Kim J, Kim CY, Oh H, Ryu B, Kim U, Lee JM, Jung CR, Park JH (2019) Trimethyltin chloride induces reactive oxygen species-mediated apoptosis in retinal cells during zebrafish eye development. Sci Total Environ 653:36–44

    CAS  Google Scholar 

  • Korbas M, Blechinger SR, Krone PH, Pickering IJ, George GN (2008) Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proc Natl Acad Sci USA 105:12108–12112

    CAS  Google Scholar 

  • Koun S, Eom Y, Kim MJ, Kim S, Lee IH, Park HC, Song JS, Kim HM (2021) Development of an experimental model for ocular toxicity screening in Zebrafish. Biochem Biophys Res Commun 559:155–160

    CAS  Google Scholar 

  • Le HG, Dowling JE, Cameron DJ (2012) Early retinoic acid deprivation in developing zebrafish results in microphthalmia. Vis Neurosci 29:219–228

    Google Scholar 

  • Lee Y, Yang J (2021) Development of a zebrafish screening model for diabetic retinopathy induced by hyperglycemia: reproducibility verification in animal model. Biomed Pharmacother 135:111201

    CAS  Google Scholar 

  • LeFauve MK, Connaughton VP (2017) Developmental exposure to heavy metals alters visually-guided behaviors in zebrafish. Curr Zool 63:221–227

    CAS  Google Scholar 

  • Li D, Sun W, Chen H, Lei H, Li X, Liu H, Huang GY, Shi WJ, Ying GG, Luo Y, Xie L (2022) Cyclophosphamide affects eye development and locomotion in zebrafish (Danio rerio). Sci Total Environ 805:150460

    CAS  Google Scholar 

  • Li P, Li ZH (2020) Toxicity evaluation of triphenyltin in zebrafish larvae by embryonic malformation, retinal development, and GH/IGF axis. Fish Physiol Biochem 46:2101–2107

    CAS  Google Scholar 

  • Li Y, Ma H, Chen R, Zhang H, Nakanishi T, Hu J (2021) Maternal transfer of 2-ethylhexyl diphenyl phosphate leads to developmental toxicity possibly by blocking the retinoic acid receptor and retinoic X receptor in Japanese Medaka (Oryzias latipes). Environ Sci Technol 55:5056–5064

    CAS  Google Scholar 

  • Link BA, Collery RF (2015) Zebrafish Models of Retinal Disease. Annu Rev vis Sci 1:125–153

    Google Scholar 

  • Liu W, Zhang X, Wei P, Tian H, Wang W, Ru S (2018) Long-term exposure to bisphenol S damages the visual system and reduces the tracking capability of male zebrafish (Danio rerio). J Appl Toxicol 38:248–258

    Google Scholar 

  • Liu Y, Bai J, Yao H, Li G, Zhang T, Li S, Zhang L, Si J, Zhou R, Zhang H (2020) Embryotoxicity assessment and efficient removal of naphthalene from water by irradiated graphene aerogels. Ecotoxicol Environ Saf 189:110051

    CAS  Google Scholar 

  • Liu Y, Wang Y, Li N, Jiang S (2022) Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. Sci Total Environ 806:150681

    CAS  Google Scholar 

  • Ma X, Dai Y, Qiu T, Chen X, Xiao P, Li W (2023) Effects of acute exposure to amisulbrom on retinal development in zebrafish (Danio rerio) embryos. Environ Sci Pollut Res Int 30(16):46248–46256

  • Magnuson JT, Bautista NM, Lucero J, Lund AK, Xu EG, Schlenk D, Burggren WW, Roberts AP (2020) Exposure to crude oil induces retinal apoptosis and impairs visual function in fish. Environ Sci Technol 54:2843–2850

    CAS  Google Scholar 

  • Magnuson JT, Leads RR, McGruer V, Qian L, Tanabe P, Roberts AP, Schlenk D (2023) Transcriptomic profiling of miR-203a inhibitor and miR-34b-injected zebrafish (Danio rerio) validates oil-induced neurological, cardiovascular and eye toxicity response pathways. Aquat Toxicol 254:106356

    CAS  Google Scholar 

  • Magnuson JT, Qian L, McGruer V, Cheng V, Volz DC, Schlenk D (2022) Relationship between miR-203a inhibition and oil-induced toxicity in early life stage zebrafish (Danio rerio). Toxicol Rep 9:373–381

    CAS  Google Scholar 

  • McNerney C, Johnston RJ Jr (2021) Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: insights from model organisms and human stem cell-derived retinal organoids. Vitam Horm 116:51–90

    Google Scholar 

  • Medici S, Peana M, Pelucelli A, Zoroddu MA (2021) An updated overview on metal nanoparticles toxicity. Semin Cancer Biol 76:17–26

    CAS  Google Scholar 

  • Meyers JR, Hu L, Moses A, Kaboli K, Papandrea A, Raymond PA (2012) β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev 7:30

    Google Scholar 

  • Musleh M, Hall G, Lloyd IC, Gillespie RL, Waller S, Douzgou S, Clayton-Smith J, Kehdi E, Black GC, Ashworth J (2016) Diagnosing the cause of bilateral paediatric cataracts: comparison of standard testing with a next-generation sequencing approach. Eye (lond) 30:1175–1181

    CAS  Google Scholar 

  • Polevoy C, Arbuckle TE, Oulhote Y, Lanphear BP, Cockell KA, Muckle G, Saint-Amour D (2020) Prenatal exposure to legacy contaminants and visual acuity in Canadian infants: a maternal-infant research on environmental chemicals study (MIREC-ID). Environ Health: Global Access Sci Sour 19:14

    CAS  Google Scholar 

  • Prabhudesai SN, Cameron DA, Stenkamp DL (2005) Targeted effects of retinoic acid signaling upon photoreceptor development in zebrafish. Dev Biol 287:157–167

    CAS  Google Scholar 

  • Qian L, Qi S, Wang Z, Magnuson JT, Volz DC, Schlenk D, Jiang J, Wang C (2021) Environmentally relevant concentrations of boscalid exposure affects the neurobehavioral response of zebrafish by disrupting visual and nervous systems. J Hazard Mater 404:124083

    CAS  Google Scholar 

  • Qiu T, Chen X, Xiao P, Wang L, Li W (2022) Effects of embryonic exposure to fluxapyroxad on zebrafish (Danio rerio) ocular development. Pestic Biochem Physiol 181:105018

    CAS  Google Scholar 

  • Reider M, Connaughton VP (2014) Effects of low-dose embryonic thyroid disruption and rearing temperature on the development of the eye and retina in zebrafish. Birth Defects Res B 101:347–354

    CAS  Google Scholar 

  • Rice C, Ghorai JK, Zalewski K, Weber DN (2011) Developmental lead exposure causes startle response deficits in zebrafish. Aquat Toxicol 105:600–608

    CAS  Google Scholar 

  • Richards FM, Alderton WK, Kimber GM, Liu Z, Strang I, Redfern WS, Valentin JP, Winter MJ, Hutchinson TH (2008) Validation of the use of zebrafish larvae in visual safety assessment. J Pharmacol Toxicol Methods 58:50–58

    CAS  Google Scholar 

  • Richardson R, Tracey-White D, Webster A, Moosajee M (2017) The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (lond) 31:68–86

    CAS  Google Scholar 

  • Robinson J, Schmitt EA, Hárosi FI, Reece RJ, Dowling JE (1993) Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. Proc Natl Acad Sci USA 90:6009–6012

    CAS  Google Scholar 

  • Santos D, Félix L, Luzio A, Parra S, Cabecinha E, Bellas J, Monteiro SM (2020) Toxicological effects induced on early life stages of zebrafish (Danio rerio) after an acute exposure to microplastics alone or co-exposed with copper. Chemosphere 261:127748

    CAS  Google Scholar 

  • Sharma A, Neekhra A, Gramajo AL, Patil J, Chwa M, Kuppermann BD, Kenney MC (2008) Effects of Benzo(e)Pyrene, a toxic component of cigarette smoke, on human retinal pigment epithelial cells in vitro. Invest Ophthalmol vis Sci 49:5111–5117

    Google Scholar 

  • Shen C, Cai Y, Li J, He C, Zuo Z (2023) Mepanipyrim induces visual developmental toxicity and vision-guided behavioral alteration in zebrafish larvae. J Environ Sci 124:76–88

    Google Scholar 

  • Shi Q, Tsui MMP, Hu C, Lam JCW, Zhou B, Chen L (2019a) Acute exposure to triphenyl phosphate (TPhP) disturbs ocular development and muscular organization in zebrafish larvae. Ecotoxicol Environ Saf 179:119–126

    CAS  Google Scholar 

  • Shi Q, Wang Z, Chen L, Fu J, Han J, Hu B, Zhou B (2019b) Optical toxicity of triphenyl phosphate in zebrafish larvae. Aquat Toxicol 210:139–147

    CAS  Google Scholar 

  • Shi WJ, Huang GY, Jiang YX, Ma DD, Chen HX, Huang MZ, Hou LP, Xie L, Ying GG (2020) Medroxyprogesterone acetate affects eye growth and the transcription of associated genes in zebrafish. Ecotoxicol Environ Saf 193:110371

    CAS  Google Scholar 

  • Soares EV, Soares H (2021) Harmful effects of metal(loid) oxide nanoparticles. Appl Microbiol Biotechnol 105:1379–1394

    CAS  Google Scholar 

  • Song F, Chen Z, Lyu D, Gu Y, Lu B, Hao S, Xu Y, Jin X, Fu Q, Yao K (2022) Expression profiles of long noncoding RNAs in human corneal epithelial cells exposed to fine particulate matter. Chemosphere 287:131955

    CAS  Google Scholar 

  • Sun Y, Zhang G, He Z, Wang Y, Cui J, Li Y (2016) Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae. Int J Nanomedicine 11:905–918

    CAS  Google Scholar 

  • Tzima E, Serifi I, Tsikari I, Alzualde A, Leonardos I, Papamarcaki T (2017) Transcriptional and behavioral responses of zebrafish larvae to microcystin-LR exposure. Int J Mol Sci 18(2):365

  • van Pomeren M, Brun NR, Peijnenburg W, Vijver MG (2017) Exploring uptake and biodistribution of polystyrene (nano)particles in zebrafish embryos at different developmental stages. Aquat Toxicol 190:40–45

    Google Scholar 

  • Wang S, Lopez S, El Ahmadie N, Wengrovitz AS, Ganter J, Zhao YH, Souders CL 2nd, Martyniuk CJ (2022) Assessing sub-lethal effects of the dinitroaniline herbicide pendimethalin in zebrafish embryos/larvae (Danio rerio). Neurotoxicol Teratol 89:107051

    CAS  Google Scholar 

  • Wang WD, Hsu HJ, Li YF, Wu CY (2017) Retinoic acid protects and rescues the development of zebrafish embryonic retinal photoreceptor cells from exposure to paclobutrazol. Int J Mol Sci 18(1):130

  • Wang Y, Chen J, Du C, Li C, Huang C, Dong Q (2014a) Characterization of retinoic acid-induced neurobehavioral effects in developing zebrafish. Environ Toxicol Chem 33:431–437

    CAS  Google Scholar 

  • Wang YJ, He ZZ, Fang YW, Xu Y, Chen YN, Wang GQ, Yang YQ, Yang Z, Li YH (2014b) Effect of titanium dioxide nanoparticles on zebrafish embryos and developing retina. Int J Ophthalmol 7:917–923

    Google Scholar 

  • Wang YP, Hong Q, Qin DN, Kou CZ, Zhang CM, Guo M, Guo XR, Chi X, Tong ML (2012) Effects of embryonic exposure to polychlorinated biphenyls on zebrafish (Danio rerio) retinal development. J Appl Toxicol 32:186–193

    Google Scholar 

  • Weber DN, Connaughton VP, Dellinger JA, Klemer D, Udvadia A, Carvan MJ 3rd (2008) Selenomethionine reduces visual deficits due to developmental methylmercury exposures. Physiol Behav 93:250–260

    CAS  Google Scholar 

  • Wei N, Zhang X, Hong Q, Jiang Y, Zhang Q, Guo X, Chi X, Tong M, Liu Q (2019) The sonic hedgehog signaling pathway is suppressed following PCB(1254) exposure during retinal development. Environ Toxicol 34:340–347

    CAS  Google Scholar 

  • Wei S, Chen F, Xu T, Cao M, Yang X, Zhang B, Guo X, Yin D (2022) BDE-99 disrupts the photoreceptor patterning of zebrafish larvae via transcription factor six7. Environ Sci Technol 56(9):5673–5683

  • Wu Q, Yan W, Liu C, Hung T-C, Li G (2018) Parental transfer of titanium dioxide nanoparticle aggravated MCLR-induced developmental toxicity in zebrafish offspring. Environ Sci Nano 5:2952–2965

    CAS  Google Scholar 

  • Xiao P, Li W, Lu J, Liu Y, Luo Q, Zhang H (2021) Effects of embryonic exposure to bixafen on zebrafish (Danio rerio) retinal development. Ecotoxicol Environ Saf 228:113007

    CAS  Google Scholar 

  • Xiao Y, Jiang J, Hu W, Zhao Y, Hu J (2017) Toxicity of triphenyltin on the development of retinal axons in zebrafish at low dose. Aquat Toxicol 189:9–15

    CAS  Google Scholar 

  • Xin Q, Rotchell JM, Cheng J, Yi J, Zhang Q (2015) Silver nanoparticles affect the neural development of zebrafish embryos. J Appl Toxicol 35:1481–1492

    CAS  Google Scholar 

  • Xu T, Chen L, Hu C, Zhou B (2013) Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae. Environ Toxicol Pharmacol 35:13–20

    CAS  Google Scholar 

  • Xu T, Liu Y, Pan R, Zhang B, Yin D, Zhao J, Zhao Q (2017) Vision, color vision, and visually guided behavior: the novel toxicological targets of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). Environ Sci Technol Lett 4:132–136

    CAS  Google Scholar 

  • Xu T, Zhao J, Yin D, Zhao Q, Dong B (2015) High-throughput RNA sequencing reveals the effects of 2,2’,4,4’ -tetrabromodiphenyl ether on retina and bone development of zebrafish larvae. BMC Genomics 16:23

    Google Scholar 

  • Yan X, Chen L, Yan H (2019) Socio-economic status, visual impairment and the mediating role of lifestyles in developed rural areas of China. PLoS ONE 14:e0215329

    CAS  Google Scholar 

  • Yang F, Ma H, Ding XQ (2018) Thyroid hormone signaling in retinal development, survival, and disease. Vitam Horm 106:333–349

    CAS  Google Scholar 

  • Zhang B, Xu T, Yin D, Wei S (2020) The potential relationship between neurobehavioral toxicity and visual dysfunction of BDE-209 on zebrafish larvae: a pilot study. Environ Sci Eur 32:1–8

    Google Scholar 

  • Zhang T, Zhou XY, Ma XF, Liu JX (2015a) Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos. Aquat Toxicol 167:68–76

    CAS  Google Scholar 

  • Zhang X, Hong Q, Yang L, Zhang M, Guo X, Chi X, Tong M (2015b) PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae. Ecotoxicol Environ Saf 118:133–138

    CAS  Google Scholar 

  • Zhang Y, Wang Z, Zhao G, Liu JX (2018) Silver nanoparticles affect lens rather than retina development in zebrafish embryos. Ecotoxicol Environ Saf 163:279–288

    CAS  Google Scholar 

  • Zhang Z, Hu J, Zhen H, Wu X, Huang C (2008) Reproductive inhibition and transgenerational toxicity of triphenyltin on medaka (Oiyzias latipes) at environmentally relevant levels. Environ Sci Technol 42:8133–8139

    CAS  Google Scholar 

  • Zhao G, Sun H, Zhang T, Liu JX (2020) Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis. Cell Commun Signal 18:45

    CAS  Google Scholar 

  • Zhou W, Li X, Wang Y, Wang J, Zhang J, Wei H, Peng C, Wang Z, Li G, Li D (2021) Physiological and transcriptomic changes of zebrafish (Danio rerio) embryos-larvae in response to 2-MIB exposure. J Hazard Mater 416:126142

    CAS  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by the Guangdong Basic and Applied Basic Research Foundation (grant Nos. 2021A1515111093, 2023A1515011878, and 2023A1515012357) and the Special Grant for Key Area Programs of Guangdong Department of Education (grant No. 2021ZDZX2023).

Author information

Authors and Affiliations

Authors

Contributions

Wenlong Huang: conceptualization, data curation, formal analysis, investigation, methodology, funding acquisition, writing—original draft, and writing—review and editing; Tianjie Wu: data curation, methodology, and investigation; Ruotong Wu: data curation and formal analysis; Jiajun Peng: data curation and methodology; Qiong Zhang: data curation and methodology; Xiaoling Shi: data curation and methodology; Kusheng Wu: conceptualization, formal analysis, funding acquisition, resources, and writing—review and editing.

Corresponding author

Correspondence to Kusheng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Wei Liu

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 321 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Wu, T., Wu, R. et al. Fish to learn: insights into the effects of environmental chemicals on eye development and visual function in zebrafish. Environ Sci Pollut Res 30, 73018–73030 (2023). https://doi.org/10.1007/s11356-023-27629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27629-3

Keywords

Navigation