Skip to main content

Advertisement

Log in

Singlet oxygen generation for selective oxidation of emerging pollutants in a flow-by electrochemical system based on natural air diffusion cathode

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The decay of free radicals involved in side reactions is one of the challenges faced by electrochemical degradation of organic pollutants. To this end, a non-radical oxidation system was constructed by a natural air diffusion cathode (ADC) and a Ti-based dimensional stable anode coated by RuO2 (RuO2-Ti anode) for cathodic hydrogen peroxide activation by anodic chlorine evolution. The ADC fabricated by the carbon black of BP2000 produced a stable concentration of hydrogen peroxide of 339.94 mg L−1 (current efficiency of 73.4%) without aeration, which was superior to the cathode made by the XC72 carbon black. The flow-by ADC-RuO2 system consisted of an ADC and a RuO2-Ti anode showed high selectivity to aniline (AN) compared to benzoate (BA) in a NaCl electrolyte, whose degradation efficiencies were 97.72% and 1.3%, respectively. Rapid degradations of a mixture of emerging pollutants and AN were also observed in the ADC-RuO2 system, with pseudo-first-order kinetic constants of 0.51, 1.29, 0.89, and 0.99 min−1 for Bisphenol A (BPA), tetracycline (TC), sulfamethoxazole (SMX) and AN, respectively. Quenching experiments revealed the main reactive oxygen species for the pollutant degradation was singlet oxygen (1O2), which was also identified by the electron spin resonance (ESR) analysis. Finally, the steady-stable content of 1O2 was quantitatively determined to be 6.25 × 10−11 M by the method of furfuryl alcohol (FFA) probe. Our findings provide a fast, low energy consumption and well controlled electrochemical oxidation method for selective degradation of organic pollutants.

Graphical abstract

H2O2 generated on an air diffusion cathode by naturally diffused O2, reacts with ClO produced from chloride oxidation on the RuO2-Ti anode to form singlet oxygen (1O2). The electrochemical system shows an efficient oxidation to electron-rich emerging pollutants including bisphenol A, tetracycline, sulfamethoxazole and aniline, but a poor performance on the electron-deficient compounds (e.g., benzoate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnez-Lima LF, Melo JT, Silva AE, Oliveira AHS, Timoteo ARS, Lima-Bessa KM, Martinez GR, Medeiros MH, Di Mascio P, Galhardo RS (2012) DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res Rev Mutat Res 751(1):15–28

    Article  CAS  Google Scholar 

  • Ahmed MM, Barbati S, Doumenq P, Chiron S (2012) Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chem Eng J 197:440–447

    Article  Google Scholar 

  • An J, Li N, Zhao Q, Qiao Y, Wang S, Liao C, Zhou L, Li T, Wang X, Feng Y (2019) Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Res 164:114933

    Article  CAS  Google Scholar 

  • Bokare AD, Choi W (2015) Singlet-oxygen generation in alkaline periodate solution. Environ Sci Technol 49(24):14392–14400. https://doi.org/10.1021/acs.est.5b04119

    Article  CAS  Google Scholar 

  • Brillas E (2022a) A critical review on ibuprofen removal from synthetic waters, natural waters, and real wastewaters by advanced oxidation processes. Chemosphere 286:131849. https://doi.org/10.1016/j.chemosphere.2021.131849

    Article  CAS  Google Scholar 

  • Brillas E (2022) Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017–2021. Sci Total Environ 819:153102. https://doi.org/10.1016/j.scitotenv.2022b.153102

    Article  CAS  Google Scholar 

  • Cai H, Zou J, Lin J, Li J, Huang Y, Zhang S, Yuan B, Ma J (2022) Sodium hydroxide-enhanced acetaminophen elimination in heat/peroxymonosulfate system: production of singlet oxygen and hydroxyl radical. Chem Eng J 429:132438

    Article  CAS  Google Scholar 

  • Cheng X, Guo H, Zhang Y, Wu X, Liu Y (2017) Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res 113:80–88

    Article  CAS  Google Scholar 

  • Cordeiro PJM, Martins AS, Pereira GBS, Rocha FV, Rodrigo MAR, de Vasconcelos Lanza MR (2022) High-performance gas-diffusion electrodes for H2O2 electrosynthesis. Electrochim Acta 430:141067. https://doi.org/10.1016/j.electacta.2022.141067

    Article  CAS  Google Scholar 

  • Duan X, Sun H, Kang J, Wang Y, Indrawirawan S, Wang S (2015) Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal 5(8):4629–4636

    Article  CAS  Google Scholar 

  • Guo D, Liu Y (2020) Singlet oxygen-mediated electrochemical filter for selective and rapid degradation of organic compounds. Ind Eng Chem Res 59(31):14180–14187

    Article  CAS  Google Scholar 

  • Guo D, Liu Y, Ji H, Wang C-C, Chen B, Shen C, Li F, Wang Y, Lu P, Liu W (2021a) Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement. Environ Sci Technol 55(6):4045–4053. https://doi.org/10.1021/acs.est.1c00349

    Article  CAS  Google Scholar 

  • Guo F, Huang X, Chen Z, Sun H, Chen L (2021b) Anchoring CoP nanoparticles on the octahedral CoO by self-phosphating for enhanced photocatalytic overall water splitting activity under visible light. Chin J Chem Eng 40:114–123. https://doi.org/10.1016/j.cjche.2020.11.030

    Article  Google Scholar 

  • Held A, Halko D, Hurst J (1978) Mechanisms of chlorine oxidation of hydrogen peroxide. J Am Chem Soc 100(18):5732–5740

    Article  CAS  Google Scholar 

  • Horikoshi S, Miura T, Kajitani M, Horikoshi N, Serpone N (2008) Photodegradation of tetrahalobisphenol-A (X= Cl, Br) flame retardants and delineation of factors affecting the process. Appl Catal B 84(3–4):797–802

    Article  CAS  Google Scholar 

  • Hou S, Zhang H, Wang P, Zhang M, Yang P (2022) Multiwall carbon nanotube decorated hemin/Mn-MOF towards BPA degradation through PMS activation. J Environ Chem Eng 10(5):108426. https://doi.org/10.1016/j.jece.2022.108426

    Article  CAS  Google Scholar 

  • Huang W, Xiao S, Zhong H, Yan M, Yang X (2021) Activation of persulfates by carbonaceous materials: a review. Chem Eng J 418:129297

    Article  CAS  Google Scholar 

  • Kohn T, Nelson KL (2007) Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environ Sci Technol 41(1):192–197

    Article  CAS  Google Scholar 

  • Kwon M, Yoon Y, Kim S, Jung Y, Hwang T-M, Kang J-W (2018) Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: a comparative evaluation of 275 nm LED-UV and 254 nm LP-UV. Sci Total Environ 637:1351–1357

    Article  Google Scholar 

  • Kyotani T, Tsai L-F, Tomita A (1996) Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater 8(8):2109–2113

    Article  CAS  Google Scholar 

  • Lee H, Kim H-I, Weon S, Choi W, Hwang YS, Seo J, Lee C, Kim J-H (2016) Activation of persulfates by graphitized nanodiamonds for removal of organic compounds. Environ Sci Technol 50(18):10134–10142

    Article  CAS  Google Scholar 

  • Lee H, Lee H-J, Jeong J, Lee J, Park N-B, Lee C (2015) Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism. Chem Eng J 266:28–33

    Article  CAS  Google Scholar 

  • Li Y, Luo Z, Liang S, Qin H, Zhao X, Chen L, Wang H, Chen S (2021) Two-dimensional porous zinc cobalt sulfide nanosheet arrays with superior electrochemical performance for supercapatteries. J Mater Sci Technol 89:199–208

    Article  CAS  Google Scholar 

  • Liao J, Xie S, Yao J, Xu D, Liao P (2022) Efficient hydrogen peroxide production at high current density by air diffusion cathode based on pristine carbon black. J Electroanal Chem 904:115938. https://doi.org/10.1016/j.jelechem.2021.115938

    Article  CAS  Google Scholar 

  • Liao P, Yuan S, Chen M, Tong M, Xie W, Zhang P (2013) Regulation of electrochemically generated ferrous ions from an iron cathode for Pd-catalytic transformation of MTBE in groundwater. Environ Sci Technol 47(14):7918–7926

    Article  CAS  Google Scholar 

  • Lin C-E, Chang C-C, Lin W-C (1997) Migration behavior and separation of sulfonamides in capillary zone electrophoresis III. Citrate buffer as a background electrolyte. J Chromatogr A 768(1):105–112

    Article  CAS  Google Scholar 

  • Liu G, Feng M, Tayyab M, Gong J, Zhang M, Yang M, Lin K (2021) Direct and efficient reduction of perfluorooctanoic acid using bimetallic catalyst supported on carbon. J Hazard Mater 412:125224. https://doi.org/10.1016/j.jhazmat.2021.125224

    Article  CAS  Google Scholar 

  • Liu Y, Quan X, Fan X, Wang H, Chen S (2015) High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew Chem 127(23):6941–6945

    Article  Google Scholar 

  • Liu Z, Yang H, Huang Z, Zhou P, Liu S-J (2002) Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl Microbiol Biotechnol 58(5):679–682

    Article  CAS  Google Scholar 

  • Lu X, Zhou X, Qiu W, Wang Z, Cheng H, Zhang H, Yu J, Wang D, Ma J (2022) Singlet oxygen involved electrochemical disinfection by anodic oxidation of H2O2 in the presence of Cl−. Chem Eng J 446:136871. https://doi.org/10.1016/j.cej.2022.136871

    Article  CAS  Google Scholar 

  • Luna-Trujillo M, Palma-Goyes R, Vazquez-Arenas J, Manzo-Robledo A (2020) Formation of active chlorine species involving the higher oxide MOx+ 1 on active Ti/RuO2-IrO2 anodes: a DEMS analysis. J Electroanal Chem 878:114661

    Article  CAS  Google Scholar 

  • Luo H, Li C, Wu C, Zheng W, Dong X (2015) Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode. Electrochim Acta 186:486–493

    Article  CAS  Google Scholar 

  • Luo R, Li M, Wang C, Zhang M, Nasir Khan MA, Sun X, Shen J, Han W, Wang L, Li J (2019) Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition. Water Res 148:416–424. https://doi.org/10.1016/j.watres.2018.10.087

    Article  CAS  Google Scholar 

  • Márquez AA, Sirés I, Brillas E, Nava JL (2020) Mineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode. Chemosphere 259:127466. https://doi.org/10.1016/j.chemosphere.2020.127466

    Article  CAS  Google Scholar 

  • Nicoli R, Gaud N, Stella C, Rudaz S, Veuthey J-L (2008) Trypsin immobilization on three monolithic disks for on-line protein digestion. J Pharm Biomed Anal 48(2):398–407

    Article  CAS  Google Scholar 

  • Salokhiddinov K, Byteva I, Gurinovich G (1981) Lifetime of singlet oxygen in various solvents. J Appl Spectrosc 34(5):561–564

    Article  Google Scholar 

  • Sattler W, Mohr D, Stocker R (1994) Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol 233:469–489

    Article  CAS  Google Scholar 

  • Shinohara H, Tsaryova O, Schnurpfeil G, Wöhrle D (2006) Differently substituted phthalocyanines: comparison of calculated energy levels, singlet oxygen quantum yields, photo-oxidative stabilities, photocatalytic and catalytic activities. J Photochem Photobiol, A 184(1–2):50–57

    Article  CAS  Google Scholar 

  • Sirés I, Brillas E (2021) Upgrading and expanding the electro-Fenton and related processes. Curr Opin Electrochem 27:100686. https://doi.org/10.1016/j.coelec.2020.100686

    Article  CAS  Google Scholar 

  • Stacey OJ, Pope SJ (2013) New avenues in the design and potential application of metal complexes for photodynamic therapy. RSC Adv 3(48):25550–25564

    Article  CAS  Google Scholar 

  • Tayyab M, Liu Y, Min S, Muhammad Irfan R, Zhu Q, Zhou L, Lei J, Zhang J (2022) Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. Chin J Catal 43(4):1165–1175. https://doi.org/10.1016/s1872-2067(21)63997-9

    Article  CAS  Google Scholar 

  • Tian S, Li Y, Zeng H, Guan W, Wang Y, Zhao X (2016) Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl− from anodic oxidation. J Colloid Interface Sci 482:205–211

    Article  CAS  Google Scholar 

  • Walker WS, BezerraCavalcanti E, Atrashkevich A, Fajardo AS, Brillas E, Garcia-Segura S (2021) Mass transfer and residence time distribution in an electrochemical cell with an air-diffusion electrode: effect of air pressure and mesh promoters. Electrochim Acta 378:138131. https://doi.org/10.1016/j.electacta.2021.138131

    Article  CAS  Google Scholar 

  • Wang C, Hofmann M, Safari A, Viole I, Andrews S, Hofmann R (2019) Chlorine is preferred over bisulfite for H2O2 quenching following UV-AOP drinking water treatment. Water Res 165:115000

    Article  CAS  Google Scholar 

  • Wang P, Yap P-S, Lim T-T (2011) C-N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl Catal A 399(1):252–261. https://doi.org/10.1016/j.apcata.2011.04.008

    Article  CAS  Google Scholar 

  • Wang W, Lu X, Su P, Li Y, Cai J, Zhang Q, Zhou M, Arotiba O (2020) Enhancement of hydrogen peroxide production by electrochemical reduction of oxygen on carbon nanotubes modified with fluorine. Chemosphere 259:127423

    Article  CAS  Google Scholar 

  • Yang S, Wu P, Liu J, Chen M, Ahmed Z, Zhu N (2018) Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite. Chem Eng J 350:484–495

    Article  CAS  Google Scholar 

  • Yao J-X, Xie S-W (2022) Degradation of methylene blue in water by singlet oxygen generated from overflow reactor based on the air diffusion cathode. Environ Eng 40(05):152–158. https://doi.org/10.13205/j.hjgc.202205022

  • Yu X, Zhou M, Ren G, Ma L (2015) A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem Eng J 263:92–100. https://doi.org/10.1016/j.cej.2014.11.053

    Article  CAS  Google Scholar 

  • Zhang L, Wang W, Sun S, Sun Y, Gao E, Zhang Z (2014) Elimination of BPA endocrine disruptor by magnetic BiOBr@ SiO2@ Fe3O4 photocatalyst. Appl Catal B 148:164–169

    Article  Google Scholar 

  • Zhang P, Chen Y, Yang X, Gui J, Li Y, Peng H, Liu D, Qiu J (2017) Pt/ZnO@ C nanocable with dual-enhanced photocatalytic performance and superior photostability. Langmuir 33(18):4452–4460

    Article  CAS  Google Scholar 

  • Zhang Q, Zhou M, Ren G, Li Y, Li Y, Du X (2020) Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat Commun 11(1):1–11

    Google Scholar 

  • Zhang Y, Daniel G, Lanzalaco S, Isse AA, Facchin A, Wang A, Brillas E, Durante C, Sirés I (2022a) H2O2 production at gas-diffusion cathodes made from agarose-derived carbons with different textural properties for acebutolol degradation in chloride media. J Hazard Mater 423:127005. https://doi.org/10.1016/j.jhazmat.2021.127005

    Article  CAS  Google Scholar 

  • Zhang Y, Shamzhy M, Kubů M, Čejka J (2022b) Nanosponge hierarchical micro-mesoporous MFI zeolites as a high-performance catalyst for the hydroamination of methyl acrylate with aniline. Microporous Mesoporous Mater 341:112087. https://doi.org/10.1016/j.micromeso.2022.112087

    Article  CAS  Google Scholar 

  • Zheng W, Liu Y, Liu W, Ji H, Li F, Shen C, Fang X, Li X, Duan X (2021) A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. Water Res 194:116961. https://doi.org/10.1016/j.watres.2021.116961

    Article  CAS  Google Scholar 

  • Zhou Y, Jiang J, Gao Y, Ma J, Pang SY, Li J, Lu XT, Yuan LP (2015) Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process. Environ Sci Technol 49(21):12941–12950. https://doi.org/10.1021/acs.est.5b03595

    Article  CAS  Google Scholar 

  • Zhu S, Li X, Kang J, Duan X, Wang S (2018) Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ Sci Technol 53(1):307–315

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Miss Wang and Mr. Wang at the Analytical & Testing Center of Wuhan University of Science and Technology for their help on SEM and BET analysis.

Funding

This work was supported by the National Natural Science Foundation of China (No. 51808415).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, experiment conduct, data collection and analysis were performed by Yi Li, and Jiaxiong Yao. The first draft of the manuscript was written by Yi Li. Supervision, reviewing editing, and validation were performed by Shiwei Xie and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shiwei Xie.

Ethics declarations

Consent for publication

All authors agreed to publish.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Weiming Zhang

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 588 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xie, S. & Yao, J. Singlet oxygen generation for selective oxidation of emerging pollutants in a flow-by electrochemical system based on natural air diffusion cathode. Environ Sci Pollut Res 30, 17854–17864 (2023). https://doi.org/10.1007/s11356-022-23364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23364-3

Keywords

Navigation