Skip to main content
Log in

A pathway of free radical generation via copper corrosion and its application to oxygen and ozone activation for the oxidative destruction of organic pollutants

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This study investigated the commercially available zero-valent copper powder and copper foil to activate molecular oxygen (O2) and ozone for the degradation of organic pollutants. Under aerobic atmospheric conditions, copper powder effectively removed 50 mg/L of acetaminophen (ACT) within 2 h, though the degradation rate using the foil was less than 20% of the powder. However, copper foil activated ozone to effectively degrade ACT. The total organic carbon (TOC) removal reached a high of 58.3% at a catalyst concentration of 40 g/L, but only 26.8% with ozone alone. The initial solution pH and dosage of copper foil were key operational parameters affecting the ozone activation process. H2O2 and Cu(I) were important intermediates in the process as hydroxyl radicals (·OH) were identified via EPR (electron paramagnetic resonance) experiments and free radical scavengers. The generation of ·OH was attributed to a Fenton-like reaction between Cu(I) and H2O2; this free-radical generation mechanism differs from typical transition metal oxide catalysts. This study outlines a promising approach to significantly increase the generation of ·OH and effectively remove refractory organic compounds. Furthermore, these copper products are applied in structural components of practical water treatment. Thus, the study of corrosion resistance to oxygen and ozone in aqueous solution have both a practical and theoretical significance. It was determined that copper products were resistant to oxygen corrosion in aqueous solution, but not resistant to ozone corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.R. Keenan, D.L. Sedlak, Environ. Sci. Technol. 42(4), 1262 (2008)

    Article  CAS  Google Scholar 

  2. S.H. Joo, A.J. Feitz, D.L. Sedlak, T.D. Waite, Environ. Sci. Technol. 39(5), 1263 (2005)

    Article  CAS  Google Scholar 

  3. W.P. Liu, H.H. Zhang, B.P. Cao, K.D. Lin, J. Gan, Water Res. 45(4), 1872 (2011)

    Article  CAS  Google Scholar 

  4. X. Liu, J.H. Fan, L.M. Ma, Chem. Eng. J. 236, 274 (2014)

    Article  CAS  Google Scholar 

  5. G.H. Dong, Z.H. Ai, L.Z. Zhang, Water Res. 66, 22 (2014)

    Article  CAS  Google Scholar 

  6. G. Wen, S.J. Wang, J. Ma, T.L. Huang, Z.Q. Liu, L. Zhao, J.L. Xu, J. Hazard. Mater. 275, 193 (2014)

    Article  CAS  Google Scholar 

  7. S.H. Joo, A.J. Feitz, T.D. Waite, Environ. Sci. Technol. 38(7), 2242 (2004)

    Article  CAS  Google Scholar 

  8. F. Ghanbari, M. Moradi, M. Manshouri, J. Environ. Chem. Eng. 2(3), 1846 (2014)

    Article  CAS  Google Scholar 

  9. Y. Zhang, J. Fan, B. Yang, W. Huang, L. Ma, Chemosphere 166, 89 (2017)

    Article  CAS  Google Scholar 

  10. K.Y. Park, S.Y. Choi, S.H. Lee, J.H. Kweon, J.H. Song, Environ. Pollut. 215, 314 (2016)

    Article  CAS  Google Scholar 

  11. P.C. Xie, J. Ma, J.Y. Fang, Y.H. Guan, S.Y. Yue, X.C. Li, L.W. Chen, Environ. Sci. Technol. 47(24), 14051 (2013)

    Article  CAS  Google Scholar 

  12. W. Lou, A. Kane, D. Wolbert, S. Rtimi, A.A. Assadi, Chem. Eng. Process. 122, 213 (2017)

    Article  CAS  Google Scholar 

  13. J. Nawrocki, Appl. Catal. B-Environ. 142, 465 (2013)

    Article  Google Scholar 

  14. J. Nawrocki, B. Kasprzyk-Hordern, Appl. Catal. B-Environ. 99(1–2), 27 (2010)

    Article  CAS  Google Scholar 

  15. B. Kasprzyk-Hordern, U. Raczyk-Stanislawiak, J. Swietlik, J. Nawrocki, Appl. Catal. B-Environ. 62(3–4), 345 (2006)

    Article  CAS  Google Scholar 

  16. F.J. Beltran, F.J. Rivas, R. Montero-de-Espinosa, Appl. Catal. B-Environ. 39(3), 221 (2002)

    Article  CAS  Google Scholar 

  17. B. Kasprzyk-Hordern, M. Ziolek, J. Nawrocki, Appl. Catal. B-Environ. 46(4), 639 (2003)

    Article  CAS  Google Scholar 

  18. R. Gracia, S. Cortés, J. Sarasa, P. Ormad, J.L. Ovelleiro, Ozone Sci. Eng. 22(5), 461 (2000)

    Article  CAS  Google Scholar 

  19. F. Pan, Y. Luo, J.J. Fan, D.C. Liu, J. Fu, Clean-Soil Air Water 40(4), 422 (2012)

    Article  CAS  Google Scholar 

  20. S. Zhang, D. Wang, X. Quan, L. Zhou, X.W. Zhang, Sep. Purif. Technol. 116, 351 (2013)

    Article  CAS  Google Scholar 

  21. Z.K. Xiong, B. Lai, Y. Yuan, J.Y. Cao, P. Yang, Y.X. Zhou, Chem. Eng. J. 302, 137 (2016)

    Article  CAS  Google Scholar 

  22. E. Moctezuma, E. Leyva, C.A. Aguilar, R.A. Luna, C. Montalvo, J. Hazard. Mater. 243, 130 (2012)

    Article  CAS  Google Scholar 

  23. Z.H. Ai, Z.T. Gao, L.Z. Zhang, W.W. He, J.J. Yin, Environ. Sci. Technol. 47(10), 5344 (2013)

    Article  CAS  Google Scholar 

  24. S.J. Wu, T.H. Liou, F.L. Mi, Bioresour. Technol. 100(19), 4348 (2009)

    Article  CAS  Google Scholar 

  25. N.K.V. Leitner, H.X. Fu, Top. Catal. 33(1–4), 249 (2005)

    Article  CAS  Google Scholar 

  26. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17(2), 513 (1988)

    Article  CAS  Google Scholar 

  27. J. Peng, L. Lai, X. Jiang, W. Jiang, B. Lai, Sep. Purif. Technol. 195, 138 (2018)

    Article  CAS  Google Scholar 

  28. J. De Laat, T.G. Le, Appl. Catal. B Environ 66(1–2), 137 (2006)

    Article  Google Scholar 

  29. Y. Sun, J. Li, T. Huang, X. Guan, Water Res. 100, 277 (2016)

    Article  CAS  Google Scholar 

  30. Y.F. Su, C.Y. Hsu, Y.H. Shih, Chemosphere 88(11), 1346 (2012)

    Article  CAS  Google Scholar 

  31. A.C. Quiroz, C. Barrera-Diaz, G. Roa-Morales, P.B. Hernandez, R. Romero, R. Natividad, Ind. Eng. Chem. Res. 50(5), 2488 (2011)

    Article  Google Scholar 

  32. G. Wen, S.J. Wang, J. Ma, T.L. Huang, Z.Q. Liu, L. Zhao, J.F. Su, J. Hazard. Mater. 265, 69 (2014)

    Article  CAS  Google Scholar 

  33. J. Hoigne, H. Bader, Water Res. 17(2), 173 (1983)

    Article  CAS  Google Scholar 

  34. M. Masarwa, H. Cohen, D. Meyerstein, D.L. Hickman, A. Bakac, J.H. Espenson, J. Am. Chem. Soc. 110(13), 4293 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Grant No. 51778449) and the Foundation of Institute of Water Environmental Engineering, Jiangsu Industrial Technology Research Institute (Yancheng), China (NDYC-KF-2017-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, Y., Wang, H. et al. A pathway of free radical generation via copper corrosion and its application to oxygen and ozone activation for the oxidative destruction of organic pollutants. Res Chem Intermed 44, 7391–7410 (2018). https://doi.org/10.1007/s11164-018-3562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3562-2

Keywords

Navigation