Skip to main content

Advertisement

Log in

Nitric oxide–secreting probiotics as sustainable bio-cleaners for reverse osmosis membrane systems

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Membrane biofouling in water purification plants is a serious issue of worldwide concern. Various chemical, physical, and biochemical processes are practised for membrane clean-up. A high-dosage treatment adversely affects the life expectancy of the membrane, and minimum dosage seems unable to deteriorate the biofilms on the membrane. It is reported that quorum quenchers like nitric oxide (NO) disrupt biofilm signals through metabolic rewiring, and also NO is known to be secreted by probiotics (good bacteria). In the present review, it is hypothesized that if probiotic biofilms secreting NO are used, other microbes that aggregate on the filtration membrane could be mitigated. The concept of probiotic administration on filtration membrane seeks to be encouraged because probiotic bacteria will not be hazardous, even if released during filtration. The fundamental motive to present probiotics as a resource for sequestering NO may serve as multifunctional bioweapons for membrane remediation, which will virtually guarantee their long-term sustainability and green approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data referred in this paper are available in public domain.

References

  • Abd El Aleem F, Al-Sugair K, Alahmad M (1998) Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia. Int Biodeterior Biodegrad 41(1):19–23

  • Adawi D, Kasravi FB, Molin G, Jeppsson B (1997) Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat. Hepatology 25(3):642–647

    Article  CAS  Google Scholar 

  • Ahmed SM, Naguib KM (2017) Using free nitrous acid for biofouling removal and control of reverse osmosis membranes. Membranes 2:2

    Google Scholar 

  • Al-Abri M, Al-Ghafri B, Bora T, Dobretsov S, Dutta J, Castelletto S, Rosa L, Boretti A (2019) Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water 2(1):1–16

    Google Scholar 

  • Al-Juboori RA, Yusaf T (2012) Biofouling in RO system: mechanisms, monitoring and controlling. Desalination 302:1–23

  • Alagawany M, Abd El-Hack ME, Farag MR, Sachan S, Karthik K, Dhama K (2018) The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ Sci Pollut Res 25(11):10611–10618

    Article  CAS  Google Scholar 

  • Allison DG (2003) The biofilm matrix. Biofouling 19(2):139–150

    Article  CAS  Google Scholar 

  • Arihara K, Kushida H, Kondo Y, Itoh M, Luchansky J, Cassens R (1993) Conversion of metmyoglobin to bright red myoglobin derivatives by Chromobacterium violaceum, Kurthia sp., and Lactobacillus fermenturn JCM1173. J Food Sci 58(1):38–42

    Article  CAS  Google Scholar 

  • Arneth W, Herold B (1988) Nitrat/Nitrit-Bestimmung in Wurstwaren nach enzymatischer reduction. Fleischwirtschaft 68:761–764

    CAS  Google Scholar 

  • Arora DP, Boon EM (2012) Nitric oxide regulated two-component signaling in Pseudoalteromonas atlantica. Biochem Biophys Res Commun 421(3):521–526

    Article  CAS  Google Scholar 

  • Arora DP, Hossain S, Xu Y, Boon EM (2015) Nitric oxide regulation of bacterial biofilms. Biochemistry 54(24):3717–3728

    Article  CAS  Google Scholar 

  • Avlonitis S (2002) Operational water cost and productivity improvements for small-size RO desalination plants. Desalination 142(3):295–304

    Article  CAS  Google Scholar 

  • Avlonitis S, Kouroumbas K, Vlachakis N (2003) Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination 157(1–3):151–158

    Article  CAS  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):1–15

    Article  Google Scholar 

  • Baek Y, Yu J, Kim S-H, Lee S, Yoon J (2011) Effect of surface properties of reverse osmosis membranes on biofouling occurrence under filtration conditions. J Membr Sci 382(1–2):91–99

  • Baker RW (2012) Membrane technology and applications. John Wiley & Sons

    Book  Google Scholar 

  • Baker J, Dudley L (1998) Biofouling in membrane systems—a review. Desalination 118(1–3):81–89

    Article  CAS  Google Scholar 

  • Balakrishnan A, Jena G, George RP, Philip J (2021) Polydimethylsiloxane–graphene oxide nanocomposite coatings with improved anti-corrosion and anti-biofouling properties. Environ Sci Pollut Res 28(6):7404–7422

    Article  CAS  Google Scholar 

  • Barbaree J, Payne W (1967) Products of denitrification by a marine bacterium as revealed by gas chromatography. Mar Biol 1(2):136–139

    Article  CAS  Google Scholar 

  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15(1):1–7

    Article  Google Scholar 

  • Barnes RJ, Bandi RR, Wong WS, Barraud N, McDougald D, Fane A, Kjelleberg S, Rice SA (2013) Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes. Biofouling 29(2):203–212

    Article  CAS  Google Scholar 

  • Barnes RJ, Low JH, Bandi RR, Tay M, Chua F, Aung T, Fane AG, Kjelleberg S, Rice SA (2015) Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Appl Environ Microbiol 81(7):2515–2524

    Article  CAS  Google Scholar 

  • Barraud N, Hassett DJ, Hwang S-H, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353

    Article  CAS  Google Scholar 

  • Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S (2009) Nitric oxide-mediated dispersal in single-and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2(3):370–378

    Article  CAS  Google Scholar 

  • Bartels CR, Wilf M, Andes K, Iong J (2005) Design considerations for wastewater treatment by reverse osmosis. Water Sci Technol 51(6–7):473–482

    Article  CAS  Google Scholar 

  • Barzegari A, Kheyrolahzadeh K, Khatibi SMH, Sharifi S, Memar MY, Vahed SZ (2020) The battle of probiotics and their derivatives against biofilms. Infect Drug Resist 13:659

    Article  CAS  Google Scholar 

  • Bernardeau M, Guguen M, Vernoux JP (2006) Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev 30(4):487–513

    Article  CAS  Google Scholar 

  • Bertheas U, Majamaa K, Arzu A, Pahnke R (2009) Use of DBNPA to control biofouling in RO systems. Desalin Water Treat 3(1–3):175–178

    Article  CAS  Google Scholar 

  • Bhojwani S, Topolski K, Mukherjee R, Sengupta D, El-Halwagi MM (2019) Technology review and data analysis for cost assessment of water treatment systems. Sci Total Environ 651:2749–2761

    Article  CAS  Google Scholar 

  • Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger K-E, Hancock R, Kalman D (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31(11):1957–1965

    Article  CAS  Google Scholar 

  • Borriello S, Hammes W, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, Valtonen V (2003) Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36(6):775–780

    Article  CAS  Google Scholar 

  • Bove P, Capozzi V, Garofalo C, Rieu A, Spano G, Fiocco D (2012) Inactivation of the ftsH gene of Lactobacillus plantarum WCFS1: effects on growth, stress tolerance, cell surface properties and biofilm formation. Microbiol Res 167(4):187–193

    Article  CAS  Google Scholar 

  • Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biol Med 43(5):645–657

    Article  CAS  Google Scholar 

  • Cabello P, Roldan MD, Moreno-Vivian C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150(11):3527–3546

    Article  CAS  Google Scholar 

  • Carlson HK, Vance RE, Marletta MA (2010) H-NOX regulation of c-di-GMP metabolism and biofilm formation in Legionella pneumophila. Mol Microbiol 77(4):930–942

    CAS  Google Scholar 

  • Chambers JR, Cherny KE, Sauer K (2017) Susceptibility of Pseudomonas aeruginosa dispersed cells to antimicrobial agents is dependent on the dispersion cue and class of the antimicrobial agent used. Antimicrob Agents Chemother 61(12):e00846-e817

    Article  CAS  Google Scholar 

  • Chang Y, Reardon D, Kwan P, Boyd G, Brant J, Rakness K, Furukawa D (2008) Evaluation of dynamic energy consumption of advanced water and wastewater treatment technologies. AWWA Research Foundation & California Energy Commission, Denver

  • Chen Z-Y, Hsieh Y-M, Huang C-C, Tsai C-C (2017) Inhibitory effects of probiotic Lactobacillus on the growth of human colonic carcinoma cell line HT-29. Molecules 22(1):107

    Article  Google Scholar 

  • Chong T, Wong F, Fane A (2008) The effect of imposed flux on biofouling in reverse osmosis: role of concentration polarisation and biofilm enhanced osmotic pressure phenomena. J Membr Sci 325(2):840–850

    Article  CAS  Google Scholar 

  • Chua SL, Tan SY-Y, Rybtke MT, Chen Y, Rice SA, Kjelleberg S, Tolker-Nielsen T, Yang L, Givskov M (2013) Bis-(3′-5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(5):2066–2075

    Article  CAS  Google Scholar 

  • Cutruzzolà F (1999) Bacterial nitric oxide synthesis. Biochim Biophys Acta (BBA)-Bioenergetics 1411(2–3):231–249

    Article  Google Scholar 

  • Cutruzzola F, Frankenberg-Dinkel N (2016) Origin and impact of nitric oxide in Pseudomonas aeruginosa biofilms. J Bacteriol 198(1):55–65

    Article  CAS  Google Scholar 

  • Daniel N, Nageswari P (2017) Exogenous probiotics on biofloc based aquaculture: a review. Curr Agric Res J 5(1):88

    Article  Google Scholar 

  • Dhanasekaran D, Thajuddin N, Rashmi M, Deepika T, Gunasekaran M (2009) Screening of biofouling activity in marine bacterial isolate from ship hull. Int J Environ Sci Technol 6(2):197–202

    Article  CAS  Google Scholar 

  • Dittoe DK, Ricke SC, Kiess AS (2018) Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front Vet Sci 5:216

    Article  Google Scholar 

  • Dow JM, Fouhy Y, Lucey JF, Ryan RP (2006) The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant Microbe Interact 19(12):1378–1384

    Article  CAS  Google Scholar 

  • Du X, Wang Y, Leslie G, Li G, Liang H (2017) Shear stress in a pressure-driven membrane system and its impact on membrane fouling from a hydrodynamic condition perspective: a review. J Chem Technol Biotechnol 92(3):463–478

    Article  CAS  Google Scholar 

  • Ettouney HM, El-Dessouky HT, Faibish RS, Gowin PJ (2002) Evaluating the economics of desalination. Chem Eng Prog 98(12):32–39

    CAS  Google Scholar 

  • Feo-García J, Ruiz-García A, Ruiz-Saavedra E, Melian-Martel N (2016) Cost assessment in SWRO desalination plants with a production of 600 m3/d in Canary Islands. Desalin Water Treat 57(48–49):22887–22893

    Article  Google Scholar 

  • Figueroa-González I, Quijano G, Ramirez G, Cruz-Guerrero A (2011) Probiotics and prebiotics—perspectives and challenges. J Sci Food Agric 91(8):1341–1348

    Article  Google Scholar 

  • Fleming D, Rumbaugh K (2018) The consequences of biofilm dispersal on the host. Sci Rep 8(1):1–7

    Article  Google Scholar 

  • Flemming H-C (1997) Reverse osmosis membrane biofouling. Exp Thermal Fluid Sci 14(4):382–391. https://doi.org/10.1016/S0894-1777(96)00140-9

  • Flemming H-C, Schaule G (1988) Biofouling on membranes-a microbiological approach. Desalination 70(1–3):95–119

    Article  CAS  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  Google Scholar 

  • Flemming H-C (2011) Microbial biofouling – unsolved problems, insufficient approaches and possible solutions. In: Flemming H-C, Wingender J, Szewzyk U (eds) Biofilm Perspectives. Springer International, Heidelberg, New York (Chapter 5)

  • Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. Adv Microb Ecol 1:135–214

  • Foresi N, Correa-Aragunde N, Amenta M, Arruebarrena A, Creus C, Lamattina L (2016) Detection of nitric oxide and determination of nitrite concentrations in Arabidopsis thaliana and Azospirilum brasilense. Bio-Protoc 6(6):e1765–e1765

    Article  Google Scholar 

  • Fujiwara N, Matsuyama H (2008) Optimization of the intermittent chlorine injection (ICI) method for seawater desalination RO plants. Desalination 229(1–3):231–244

    Article  CAS  Google Scholar 

  • Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207

    Article  CAS  Google Scholar 

  • Ghosh S, Qureshi A, Purohit HJ (2019) D-Tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. J Biosci 44(1):3

    Article  Google Scholar 

  • Gillor O, Etzion A, Riley M (2008) The dual role of bacteriocins as anti-and probiotics. Appl Microbiol Biotechnol 81(4):591–606

    Article  CAS  Google Scholar 

  • Gou M, Liu X, Qu H (2019) The role of nitric oxide in the mechanism of lactic acid bacteria substituting for nitrite. CyTA-J Food 17(1):593–602

    Article  CAS  Google Scholar 

  • Griess P (1879) Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt “Ueber einige Azoverbindungen”. Ber Dtsch Chem Ges 12(1):426–428

    Article  Google Scholar 

  • Grisham MB, Johnson GG, Lancaster JR Jr (1996) Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol 268:237–246

    Article  CAS  Google Scholar 

  • Gude VG (2017) Desalination and water reuse to address global water scarcity. Rev Environ Sci Biotechnol 16(4):591–609

    Article  Google Scholar 

  • Gündoğdu AK, Karahan AG, Çakmakç ML (2006) Production of nitric oxide (NO) by lactic acid bacteria isolated from fermented products. Eur Food Res Technol 223(1):35–38

    Article  Google Scholar 

  • Gutman J, Fox S, Gilron J (2012) Interactions between biofilms and NF/RO flux and their implications for control—A review of recent developments. J Membr Sci 421:1–7

    Article  Google Scholar 

  • Henares BM, Xu Y, Boon EM (2013) A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation. Int J Mol Sci 14(8):16473–16484

    Article  Google Scholar 

  • Henderson B, Martin AC (2014) Protein moonlighting: a new factor in biology and medicine. Biochem Soc Trans 42(6):1671–1678

    Article  CAS  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273

    Article  CAS  Google Scholar 

  • Herzberg M (2010) Osmotic effects of biofouling in reverse osmosis (RO) processes: physical and physiological measurements and mechanisms. Desalin Water Treat 15(1–3):287–291

    Article  CAS  Google Scholar 

  • Herzberg M, Elimelech M (2007) Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure. J Membr Sci 295(1–2):11–20

    Article  CAS  Google Scholar 

  • Hlordzi V, Kuebutornye FK, Afriyie G, Abarike ED, Lu Y, Chi S, Anokyewaa MA (2020) The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquacult Rep 18:100503

    Article  Google Scholar 

  • Hoek EM, Elimelech M (2003) Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Environ Sci Technol 37(24):5581–5588

    Article  CAS  Google Scholar 

  • Hossain S, Boon EM (2017) Discovery of a novel nitric oxide binding protein and nitric-oxide-responsive signaling pathway in Pseudomonas aeruginosa. ACS Infect Dis 3(6):454–461

    Article  CAS  Google Scholar 

  • Hugenholtz J, Rob B, Elit SJ (2011) Nitrate reduction by a probiotic in the presence of a heme. In: Google Patents

  • Hurshman AR, Krebs C, Edmondson DE, Huynh BH, Marletta MA (1999) Formation of a pterin radical in the reaction of the heme domain of inducible nitric oxide synthase with oxygen. Biochemistry 38(48):15689–15696

    Article  CAS  Google Scholar 

  • Husain FM, Al-Shabib NAA, Alyousef A, Khan A, Arshad M, Hassan I, Albalawi TA, Ahmad I (2020) Probiotic bacteria used in food: a novel class of antibiofilm agent. In: Saghir A, Nasser AA (eds) Functional food products and sustainable health, Springer, Singapore, pp 25–35

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407

    Article  CAS  Google Scholar 

  • Jia X, Klemeš JJ, Varbanov PS, Wan Alwi SR (2019) Analyzing the energy consumption, GHG emission, and cost of seawater desalination in China. Energies 12(3):463

    Article  CAS  Google Scholar 

  • Kampouris ID, Karayannakidis PD, Banti DC, Sakoula D, Konstantinidis D, Yiangou M, Samaras PE (2018) Evaluation of a novel quorum quenching strain for MBR biofouling mitigation. Water Res 143:56–65

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  • Kang G-d, Cao Y-m (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46(3):584–600

  • Kang D-K, Oh H, Ham J-S, Kim J, Yoon C, Ahn Y, Kim H (2005) Identification and characterization of hydrogen peroxide-generating Lactobacillus fermentum CS12-1. Asian Australas J Anim Sci 18(1):90–95

    Article  CAS  Google Scholar 

  • Khulbe K, Matsuura T, Singh S, Lamarche G, Noh S (2000) Study on fouling of ultrafiltration membrane by electron spin resonance. J Membr Sci 167(2):263–273

    Article  CAS  Google Scholar 

  • Kim D, Jung S, Sohn J, Kim H, Lee S (2009a) Biocide application for controlling biofouling of SWRO membranes—an overview. Desalination 238(1–3):43–52

    Article  CAS  Google Scholar 

  • Kim S, Lee S, Lee E, Sarper S, Kim C-H, Cho J (2009b) Enhanced or reduced concentration polarization by membrane fouling in seawater reverse osmosis (SWRO) processes. Desalination 247(1–3):162–168

    Article  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst R (2003) van Kranenburg, D. Molenaar, OP Kuipers, R. Leer, R. Tarchini, SA Peters, HM Sandbrink, MW Fiers, W. Stiekema, RM Lankhorst, PA Bron, SM Hoffer, MN Groot, R. Kerkhoven, M. de Vries, B. Ursing, WM de Vos, and RJ Siezen, 1990–1995

  • Koltuniewicz A, Noworyta A (1994) Dynamic properties of ultrafiltration systems in light of the surface renewal theory. Ind Eng Chem Res 33(7):1771–1779

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  Google Scholar 

  • Lebeer S, Verhoeven TL, Vélez MP, Vanderleyden J, De Keersmaecker SC (2007) Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73(21):6768–6775

    Article  CAS  Google Scholar 

  • Lepargneur J, Rousseau V (2002) Protective role of the Doderlein flora. J Gynecol Obstet Biol Reprod 31(5):485–494

    CAS  Google Scholar 

  • Li P, Gu Q (2018) Antimicrobial effects of probiotics and novel probiotic-based approaches for infectious diseases. In: probiotics-current knowledge and future prospects. IntechOpen, London, pp 1–19

  • Li X, Li J (2015) Dead-end filtration. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40872-4_2196-1

  • Li H, Poulos TL (2005) Structure–function studies on nitric oxide synthases. J Inorg Biochem 99(1):293–305

    Article  CAS  Google Scholar 

  • Liu N, Xu Y, Hossain S, Huang N, Coursolle D, Gralnick JA, Boon EM (2012) Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Biochemistry 51(10):2087–2099

    Article  CAS  Google Scholar 

  • Liyanaarachchi S, Shu L, Muthukumaran S, Jegatheesan V, Baskaran K (2014) Problems in seawater industrial desalination processes and potential sustainable solutions: a review. Rev Environ Sci Biotechnol 13(2):203–214

    Article  CAS  Google Scholar 

  • Luo J, Zhang J, Barnes RJ, Tan X, McDougald D, Fane AG, Zhuang G, Kjelleberg S, Cohen Y, Rice SA (2015) The application of nitric oxide to control biofouling of membrane bioreactors. Microb Biotechnol 8(3):549–560

    Article  CAS  Google Scholar 

  • Madaeni S, Samieirad S (2010) Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 257(1–3):80–86

    Article  CAS  Google Scholar 

  • Maddah H, Chogle A (2017) Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation. Applied Water Science 7(6):2637–2651

  • Mant R, Moggridge G, Aldridge D (2013) Control of the biofouling bryozoan, Plumatella repens, using pulsed chlorine treatment. Int J Environ Sci Technol 10(2):199–208

    Article  CAS  Google Scholar 

  • Matin A, Khan Z, Zaidi S, Boyce M (2011) Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination 281:1–16

    Article  CAS  Google Scholar 

  • Melo LF, Flemming H-C (2010) Mechanistic aspects of heat exchanger and membrane biofouling and prevention. In: Amjad Z (ed) The science and technology of industrial water treatment, Florida, USA: CRC Press, Talyor and Francis Group, pp 365–380

  • Muscariello L, Marino C, Capri U, Vastano V, Marasco R, Sacco M (2013) CcpA and three newly identified proteins are involved in biofilm development in Lactobacillus plantarum. J Basic Microbiol 53(1):62–71

    Article  CAS  Google Scholar 

  • Nagaraj V, Skillman L, Li D, Ho G (2018) Review-Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes. J Environ Manage 223:586–599

    Article  CAS  Google Scholar 

  • Nagaraja N, Skillman L, Xie Z, Jiang S, Ho G, Li D (2017) Investigation of compounds that degrade biofilm polysaccharides on reverse osmosis membranes from a full scale desalination plant to alleviate biofouling. Desalination 403:88–96

    Article  CAS  Google Scholar 

  • Nair MS, Amalaradjou M, Venkitanarayanan K (2017) Antivirulence properties of probiotics in combating microbial pathogenesis. Adv Appl Microbiol 98:1–29

    Article  CAS  Google Scholar 

  • Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2(4):804–840

    Article  CAS  Google Scholar 

  • Obaid M, Hamida AB (1998) Practical solutions to problems experienced in open seawater RO plants operating on the Arabian Gulf. Desalination 120(1–2):137–142

    Article  CAS  Google Scholar 

  • Oh H-S, Tan CH, Low JH, Rzechowicz M, Siddiqui MF, Winters H, Kjelleberg S, Fane AG, Rice SA (2017) Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes. Water Res 112:29–37

    Article  CAS  Google Scholar 

  • Oh H-S, Constancias F, Ramasamy C, Tang PYP, Yee MO, Fane AG, McDougald D, Rice SA (2018) Biofouling control in reverse osmosis by nitric oxide treatment and its impact on the bacterial community. J Membr Sci 550:313–321

    Article  CAS  Google Scholar 

  • Ozzello E, Mollea C, Bosco F, Bongiovanni R (2017) Factors influencing biofouling and use of polymeric materials to mitigate it. Adhes Pharm Biomed Dent Fields 185–206

  • Pal S, Qureshi A, Purohit HJ (2016) Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes. Biologia 71(3):239–246

    Article  CAS  Google Scholar 

  • Pal S, Qureshi A, Purohit HJ (2018) Intercepting signalling mechanism to control environmental biofouling. 3 Biotech 8:364

    Article  Google Scholar 

  • Pal S, Qureshi A, Purohit HJ (2020) Metagenomic insight towards vanillin-mediated membrane biofouling prevention: in silico docking validation. Curr Microbiol 77:2233–2247

    Article  CAS  Google Scholar 

  • Pal M, Pal S, Qureshi A, Sangolkar LN (2018) Perspective of cyanobacterial harmful algal bloom (HAB) mitigation: microcystis toxin degradation by bacterial consortia. Indian J Exp Biol 56(07):511–518

  • Palacin LG, Tadeo F, de Prada C, Salazar J (2013) Scheduling of the membrane module rotation in RO desalination plants. Desalin Water Treat 51(1–3):352–359

    Article  CAS  Google Scholar 

  • Pandey SR, Jegatheesan V, Baskaran K, Shu L (2012) Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent: a review. Rev Environ Sci Biotechnol 11(2):125–145

    Article  CAS  Google Scholar 

  • Plate L, Marletta MA (2012) Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol Cell 46(4):449–460

    Article  CAS  Google Scholar 

  • Plate L, Marletta MA (2013) Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior. Trends Biochem Sci 38(11):566–575

    Article  CAS  Google Scholar 

  • Potter AJ, Kidd SP, Edwards JL, Falsetta ML, Apicella MA, Jennings MP, McEwan AG (2009) Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells. J Infect Dis 199(2):227–235

    Article  CAS  Google Scholar 

  • Qureshi BA, Zubair SM, Sheikh AK, Bhujle A, Dubowsky S (2013) Design and performance evaluation of reverse osmosis desalination systems: an emphasis on fouling modeling. Appl Therm Eng 60(1–2):208–217

    Article  CAS  Google Scholar 

  • Qureshi A, Smita P, Saheli G, Atya K, Purohit HJ (2015) Antibiofouling biomaterials. Int J Recent Adv Multidiscip Res 2(8):677–684

    Google Scholar 

  • Raffin M, Germain E, Judd S (2012) Assessment of fouling of an RO process dedicated to indirect potable reuse. Desalin Water Treat 40(1–3):302–308

    CAS  Google Scholar 

  • Rao M, Smith BC, Marletta MA (2015) Nitric oxide mediates biofilm formation and symbiosis in Silicibacter sp. strain TrichCH4B. MBio 6(3):e00206-00215

    Article  CAS  Google Scholar 

  • Ras G, Leroy S, Talon R (2018) Nitric oxide synthase: what is its potential role in the physiology of staphylococci in meat products? Int J Food Microbiol 282:28–34

    Article  CAS  Google Scholar 

  • Reina-Campos M, Moscat J, Diaz-Meco M (2017) Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol 48:47–53

    Article  CAS  Google Scholar 

  • Richards M, Cloete T (2010) Nanoenzymes for biofilm removal. Nanotechnology in water treatment applications. Caister Academic, Norfolk, pp 89–102

  • Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. TrAC, Trends Anal Chem 22(10):666–684

    Article  CAS  Google Scholar 

  • Rinaldi G, Rossi M, Fendt SM (2018) Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev: Syst Biol Med 10(1):e1397

    Google Scholar 

  • Rinaldo S, Giardina G, Mantoni F, Paone A, Cutruzzolà F (2018) Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiol Lett 365(6):fny029

    Article  Google Scholar 

  • Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639

    Article  Google Scholar 

  • Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52

    Article  Google Scholar 

  • Sablani S, Goosen M, Al-Belushi R, Wilf M (2001) Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141(3):269–289

    Article  CAS  Google Scholar 

  • Salanitro J, Blake I, Muirhead P (1977) Isolation and identification of fecal bacteria from adult swine. Appl Environ Microbiol 33(1):79–84

    Article  CAS  Google Scholar 

  • Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(Supplement_2):S58–S61

    Article  Google Scholar 

  • Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach JT, Hörmannsperger G, Huys G (2010) Safety assessment of probiotics for human use. Gut Microbes 1(3):164–185

    Article  Google Scholar 

  • Schmidt I, Steenbakkersop den Camp PJHJ, SchmidtJetten KMS (2004) Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186(9):2781–2788

    Article  CAS  Google Scholar 

  • Sharma A, Srivastava S (2014) Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biol 118(2):264–275

    Article  CAS  Google Scholar 

  • Shin H, Park C, Lee C-K, Lee Y-S, Kim J-O (2020) Mitigating biofouling with a vanillin coating on thin film composite reverse osmosis membranes. Environ Sci Pollut Res 27(2):1677–1685

    Article  CAS  Google Scholar 

  • Siezen RJ, Francke C, Renckens B, Boekhorst J, Wels M, Kleerebezem M, van Hijum SA (2012) SAFT: complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol 194:195–196

  • Sobana S, Panda RC (2011) Review on modelling and control of desalination system using reverse osmosis. Rev Environ Sci Biotechnol 10(2):139–150

    Article  Google Scholar 

  • Song D, Ibrahim S, Hayek S (2012) Recent application of probiotics in food and agricultural science. Probiotics 10:1–34

    Google Scholar 

  • Sperber AM, Herman JK (2017) Metabolism shapes the cell. J Bacteriol 199(11):e00039-e17

    Article  Google Scholar 

  • Stelitano V, Giardina G, Paiardini A, Castiglione N, Cutruzzolà F, Rinaldo S (2013) C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. PLoS One 8(9):e74920

    Article  CAS  Google Scholar 

  • Stoyanova L, Ustyugova E, Netrusov A (2012) Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Appl Biochem Microbiol 48(3):229–243

    Article  CAS  Google Scholar 

  • Stuehr DJ, Santolini J, Wang Z-Q, Wei C-C, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279(35):36167–36170

    Article  CAS  Google Scholar 

  • Sudhamsu J, Crane BR (2009) Bacterial nitric oxide synthases: what are they good for? Trends Microbiol 17(5):212–218

    Article  CAS  Google Scholar 

  • Thirunavukkarasu A, Nithya R, Sivashankar R (2020) A review on the role of nanomaterials in the removal of organic pollutants from wastewater. Rev Environ Sci Biotechnol 1–28. https://doi.org/10.1007/s11157-020-09548-8

  • Tiso M, Schechter AN (2015) Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One 10(3):e0119712

    Article  Google Scholar 

  • Vega DE, Margolin W (2018) Suppression of a thermosensitive zipA cell division mutant by altering amino acid metabolism. J Bacteriol 200(2):e00535-e517

    Article  Google Scholar 

  • Vélez MP, Petrova MI, Lebeer S, Verhoeven TL, Claes I, Lambrichts I, Tynkkynen S, Vanderleyden J, De Keersmaecker SC (2010) Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol Med Microbiol 59(3):386–398

    Article  Google Scholar 

  • Vrouwenvelder J, Manolarakis S, Van der Hoek J, Van Paassen J, van der Meer WGJ, Van Agtmaal J, Prummel H, Kruithof J, Van Loosdrecht M (2008) Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Res 42(19):4856–4868

    Article  CAS  Google Scholar 

  • Vrouwenvelder J, Dreszer C, Linares VR, Kruithof JC, Mayer C, Flemming HC (2016) Why and how biofilms cause biofouling – the“hair-in-sink”-effect. In: Flemming H-C, Neu TR, Wingender J (eds) The perfect slime: microbial extracellular polymeric substances. IWA Press, London Chapter 10:193–206

  • Waheed H, Pervez S, Hashmi I, Khan S, Kim S-R (2018) High-performing antifouling bacterial consortium for submerged membrane bioreactor treating synthetic wastewater. Int J Environ Sci Technol 15(2):395–404

    Article  CAS  Google Scholar 

  • Wang H, Tseng C-P, Gunsalus RP (1999) The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite. J Bacteriol 181(17):5303–5308

    Article  CAS  Google Scholar 

  • Wang Z-Q, Lawson RJ, Buddha MR, Wei C-C, Crane BR, Munro AW, Stuehr DJ (2007) Bacterial flavodoxins support nitric oxide production by Bacillus subtilis nitric-oxide synthase. J Biol Chem 282(4):2196–2202

    Article  CAS  Google Scholar 

  • Williams DE, Fischer JT, Heckler I, Boon EM (2017) Haem-based sensors of nitric oxide. In: Gas sensing in cells, pp 15–46. https://doi.org/10.1039/9781788012836-00015

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances: characterization, structures and function. Springer-Verlag, Berlin Heidelberg, pp 1–18, Chapter 1

  • Wolf G, Hammes W (1988) Effect of hematin on the activities of nitrite reductase and catalase in lactobacilli. Arch Microbiol 149(3):220–224

    Article  CAS  Google Scholar 

  • Wolf G, Arendt EK, Pfähler U, Hammes WP (1990) Heme-dependent and heme-independent nitrite reduction by lactic acid bacteria results in different N-containing products. Int J Food Microbiol 10(3–4):323–329

    Article  CAS  Google Scholar 

  • Wood TL, Guha R, Tang L, Geitner M, Kumar M, Wood TK (2016) Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms. Proc Natl Acad Sci 113(20):E2802–E2811

    Article  CAS  Google Scholar 

  • Xu J, Verstraete W (2001) Evaluation of nitric oxide production by lactobacilli. Appl Microbiol Biotechnol 56(3):504–507

    Article  CAS  Google Scholar 

  • Xu J, Xu X, Verstraete W (2000) Adaptation of E. coli cell method for micro-scale nitrate measurement with the Griess reaction in culture media. J Microbiol Methods 41(1):23–33

    Article  CAS  Google Scholar 

  • Yarullina D, Il’inskaya O, Aganov A, Silkin N, Zverev D (2006) Alternative pathways of nitric oxide formation in lactobacilli: evidence for nitric oxide synthase activity by EPR. Microbiology 75(6):634–638

    Article  CAS  Google Scholar 

  • Yi X, Shi W (2012) Membrane science and technology: leader in water treatment industry. Rev Environ Sci Biotechnol 11(3):227–229

    Article  Google Scholar 

  • Yin Z, Yang C, Long C, Li A (2017) Influence of surface properties of RO membrane on membrane fouling for treating textile secondary effluent. Environ Sci Pollut Res 24(19):16253–16262

    Article  CAS  Google Scholar 

  • Young F (1999) Cavitation imperial college press. In: London

  • Zaidi S, Shafeeq A, Sajjad M, Hassan S, Aslam M, Saeed T, Walsh F (2020) Benchmarking of scaling and fouling of reverse osmosis membranes in a power generation plant of paper and board mill: an industrial case of a paper and board mill study. Int J Environ Sci Technol

  • Zheng L, Price WE, Nghiem LD (2019) Effects of fouling on separation performance by forward osmosis: the role of specific organic foulants. Environ Sci Pollut Res 26(33):33758–33769

    Article  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61(4):533–616

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CSIR-NEERI (KRC/2021/FEB/EBGD/4) for providing infrastructure facilities, AcSIR—NEERI and Council of Scientific and Industrial Research (CSIR, New Delhi-20) for fellowship of Anuja Maitreya [31/016(0137)/2020-EMR-I]. Also, funds from Indo Egypt Project (DST/INT/Egypt/P-03/2019), Department of Science & Technology, International Bilateral Cooperation Division, New Delhi, are acknowledged

Funding

This study was supported by the Council of Scientific and Industrial Research (CSIR, New Delhi-20) for fellowship of Anuja Maitreya [31/016(0137)/2020-EMR-I].

Author information

Authors and Affiliations

Authors

Contributions

AM: Literature survey, writing—original draft preparation. SM: Supported for bioinformatics study. AQ: Conceptualization, overall supervision, reviewing, and editing. RR: Scientific idea. HP: Scientific inputs. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Asifa Qureshi.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent to publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1275 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitreya, A., Pal, S., Qureshi, A. et al. Nitric oxide–secreting probiotics as sustainable bio-cleaners for reverse osmosis membrane systems. Environ Sci Pollut Res 29, 4911–4929 (2022). https://doi.org/10.1007/s11356-021-17289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17289-6

Keywords

Navigation