Skip to main content
Log in

Ligninase-mediated transformation of 4,4′-dibromodiphenyl ether (BDE 15)

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The structurally related hydroxylated polybrominated diphenyl ether (PBDE) like hydroxylated 4,4′-dibromodiphenyl ether widely occur in precipitation, surface water, and biotic media. The origins of hydroxylated PBDEs (OH-PBDEs) are of particular interest due to their greater toxic potencies than the corresponding PBDEs. We studied the transformation behavior and products of 4,4′-dibromodiphenyl ether (BDE 15) mediated by lignin peroxidase (LiP), an extracellular enzyme that is produced by certain white rot fungus and is widely present in the natural environment. We found that BDE 15 can be effectively transformed through the reaction mediated by LiP, and two different mono-OH-dibromodiphenyl ethers were identified by using gas chromatography–mass spectrometry (GC-MS) and GC-MS/MS. In particular, we compared the reaction behavior for systems variously containing natural organic matter (NOM) and/or veratryl alcohol (VA), a metabolite that certain fungus produces along with LiP in nature. It was found that the VA’s enhancement effect on LiP performance was impaired by the presence of NOM. The findings in this study provide useful information for better understanding the origins of OH-PBDEs found in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archibald FS (1992) A new assay for lignin-type peroxidases employing the dye azure B. Appl Environ Microb 58(9):3110–3116

    CAS  Google Scholar 

  • Banci L, Ciofi-Baffoni S, Tien M (1999) Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry 38(10):3205–3210

    Article  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1996) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(1):292–295

    CAS  Google Scholar 

  • Cantón RF, Scholten DEA, Marsh G, de Jong PC, van den Berg M (2008) Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs). Toxicol Appl Pharmacol 227(1):68–75

    Article  Google Scholar 

  • Cheng J, Mao L, Zhao Z, Shen M, Zhang S, Huang Q, Gao S (2012) Bioaccumulation, depuration and biotransformation of 4,4′-dibromodiphenyl ether in crucian carp (Carassius auratus). Chemosphere 86(5):446–453

    Article  CAS  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi H, Vyas BRM (2005) Mediator role of veratryl alcohol in the lignin peroxidase-catalyzed oxidative decolorization of Remazol Brilliant Blue R. Enzym Microb Technol 36(2):327–332

    Article  CAS  Google Scholar 

  • Colosi LM, Burlingame DJ, Huang Q, Weber WJ (2007) Peroxidase-mediated removal of a polychlorinated biphenyl using natural organic matter as the sole cosubstrate. Environ Sci Technol 41(3):891–896

    Article  CAS  Google Scholar 

  • Corin N, Backlund P, Kulovaara M (1996) Degradation products formed during UV-irradiation of humic waters. Chemosphere 33(2):245–255

    Article  CAS  Google Scholar 

  • Cozzolino A, Piccolo A (2002) Polymerization of dissolved humic substances catalyzed by peroxidase. Effects of pH and humic composition. Org Geochem 33(3):281–294

    Article  CAS  Google Scholar 

  • Čvančarová M, Křesinová Z, Filipová A, Covino S, Cajthaml T (2012) Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 88(11):1317–1323

    Article  Google Scholar 

  • Darnerud PO (2003) Toxic effects of brominated flame retardants in man and in wildlife. Environ Int 29(6):841–853

    Article  CAS  Google Scholar 

  • de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46(5):583–624

    Article  Google Scholar 

  • Dingemans MML, De Groot A, van Kleef RGDM, Bergman Å, van den Berg M, Vijverberg HPM, Westerink RHS (2008) Hydroxylation increases the neurotoxic potential of BDE-47 to affect exocytosis and calcium homeostasis in PC12 cells. Environ Heal Perspect 116(5):637

    Article  CAS  Google Scholar 

  • Domingo JL (2004) Human exposure to polybrominated diphenyl ethers through the diet. J Chromatogr A 1054(1–2):321–326

    CAS  Google Scholar 

  • Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzym Microb Technol 11(6):322–328

    Article  CAS  Google Scholar 

  • Gelpke MDS, Lee J, Gold MH (2002) Lignin peroxidase oxidation of veratryl alcohol: effects of the mutants H82A, Q222A, W171A, and F267L. Biochemistry 41(10):3498–3506

    Article  Google Scholar 

  • Hakk H, Huwe JK, Murphy K, Rutherford D (2010) Metabolism of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in chickens. J Agric Food Chem 58(15):8757–8762

    Article  CAS  Google Scholar 

  • Harvey P, Schoemaker H, Palmer J (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett 195(1–2):242–246

    Article  CAS  Google Scholar 

  • Hovander L, Athanasiadou M, Asplund L, Jensen S, Wehler EK (2000) Extraction and cleanup methods for analysis of phenolic and neutral organohalogens in plasma. J Anal Toxicol 24(8):696–703

    Article  CAS  Google Scholar 

  • Hundt K, Jonas U, Hammer E, Schauer F (1999) Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products. Biodegradation 10(4):279–286

    Article  CAS  Google Scholar 

  • Kim YM, Nam IH, Murugesan K, Schmidt S, Crowley DE, Chang YS (2007) Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. Appl Microbiol Biotechnol 77(1):187–194

    Article  CAS  Google Scholar 

  • Lan J, Huang X, Hu M, Liu W, Li Y, Qu Y, Gao P (2007) Mechanistic studies on the effect of veratryl alcohol on the lignin peroxidase catalyzed oxidation of pyrogallol red in reversed micelles. Cent Eur J Chem 5(3):672–687

    Article  CAS  Google Scholar 

  • Liu A, Huang X, Song S, Wang D, Lu X, Qu Y, Gao P (2003) Kinetics of the H2O2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique. Spectrochim Acta A Mol Biomol Spectrosc 59(11):2547–2551

    Article  Google Scholar 

  • Liu H, Zhang Q, Cai Z, Li A, Wang Y, Jiang G (2006) Separation of polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzo-furans in environmental samples using silica gel and florisil fractionation chromatography. Anal Chim Acta 557(1):314–320

    Article  CAS  Google Scholar 

  • Malmberg T, Athanasiadou M, Marsh G, Brandt I, Bergman Å (2005) Identification of hydroxylated polybrominated diphenyl ether metabolites in blood plasma from polybrominated diphenyl ether exposed rats. Environ Sci Technol 39(14):5342–5348

    Article  CAS  Google Scholar 

  • Malmvärn A, Marsh G, Kautsky L, Athanasiadou M, Bergman Å, Asplund L (2005) Hydroxylated and methoxylated brominated diphenyl ethers in the red algae Ceramium tenuicorne and blue mussels from the Baltic Sea. Environ Sci Technol 39(9):2990–2997

    Article  Google Scholar 

  • Malmvärn A, Zebühr Y, Kautsky L, Bergman K, Asplund L (2008) Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere 72(6):910

    Article  Google Scholar 

  • Mao L, Huang Q, Lu J, Gao S (2009) Ligninase-mediated removal of natural and synthetic estrogens from water: I. Reaction behaviors. Environ Sci Technol 43(2):374–379

    Article  CAS  Google Scholar 

  • Mao L, Lu J, Habteselassie M, Luo Q, Gao S, Cabrera M, Huang Q (2010a) Ligninase-mediated removal of natural and synthetic estrogens from water: II. Reactions of 17β-estradiol. Environ Sci Technol 44(7):2599–2604

    Article  CAS  Google Scholar 

  • Mao L, Lu J, Gao S, Huang Q (2010b) Transformation of 17ß-estradiol mediated by lignin peroxidase: the role of veratryl alcohol. Arch Environ Contam Toxicol 59(1):13–19

    Article  CAS  Google Scholar 

  • Meerts I, Letcher RJ, Hoving S, Marsh G, Bergman A, Lemmen JG, van der Burg B, Brouwer A (2001) In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environ Heal Perspect 109(4):399

    Article  CAS  Google Scholar 

  • Mester T, Ambert-Balay K, Ciofi-Baffoni S, Banci L, Jones AD, Tien M (2001) Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase. J Biol Chem 276(25):22985–22990

    Article  CAS  Google Scholar 

  • Qiu X, Mercado-Feliciano M, Bigsby RM, Hites RA (2007) Measurement of polybrominated diphenyl ethers and metabolites in mouse plasma after exposure to a commercial pentabromodiphenyl ether mixture. Environ Heal Perspect 115(7):1052

    Article  CAS  Google Scholar 

  • Qiu X, Bigsby RM, Hites RA (2009) Hydroxylated metabolites of polybrominated diphenyl ethers in human blood samples from the United States. Environ Heal Perspect 117(1):93

    CAS  Google Scholar 

  • Reckhow DA, Singer PC, Malcolm RL (1990) Chlorination of humic materials: byproduct formation and chemical interpretations. Environ Sci Technol 24(11):1655–1664

    Article  CAS  Google Scholar 

  • Robrock KR, Coelhan M, Sedlak DL, Alvarez-Cohen L (2009) Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates. Environ Sci Technol 43(15):5705–5711

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60(2):441–452

    Article  Google Scholar 

  • Schmidt S, Fortnagel P, Wittich RM (1993) Biodegradation and transformation of 4,4'-dihalodiphenyl and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain ss33. Appl Environ Microb 59(11):3931–3933

    CAS  Google Scholar 

  • Shen M, Cheng J, Wu R, Zhang S, Mao L, Gao S (2012) Metabolism of polybrominated diphenyl ethers and tetrabromobisphenol A by fish liver subcellular fractions in vitro. Aquat Toxicol 114–115:73–79

    Article  Google Scholar 

  • Stapleton HM (2006) Instrumental methods and challenges in quantifying polybrominated diphenyl ethers in environmental extracts: a review. Anal Bioanal Chem 386(4):807–817

    Article  CAS  Google Scholar 

  • Thomas DR, Carswell KS, Georgiou G (1992) Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol Bioeng 40(11):1395–1402

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci 81(8):2280

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    Article  CAS  Google Scholar 

  • Tuomela M, Lyytikäinen M, Oivanen P, Hatakka A (1998) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol Biochem 31(1):65–74

    Article  Google Scholar 

  • Ueno D, Darling C, Alaee M, Pacepavicius G, Teixeira C, Campbell L, Letcher RJ, Bergman Å, Marsh G, Muir D (2008) Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) in the abiotic environment: surface water and precipitation from Ontario, Canada. Environ Sci Technol 42(5):1657–1664

    Article  CAS  Google Scholar 

  • Wan Y, Wiseman S, Chang H, Zhang X, Jones PD, Hecker M, Kannan K, Tanabe S, Hu J, Lam MH (2009) Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants? Environ Sci Technol 43(19):7536–7542

    Article  CAS  Google Scholar 

  • Wariishi H, Gold MH (1989) Lignin peroxidase compound III: formation, inactivation, and conversion to the native enzyme. FEBS Lett 243(2):165–168

    Article  CAS  Google Scholar 

  • Wiseman SB, Wan Y, Chang H, Zhang X, Hecker M, Jones PD, Giesy JP (2011) Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. Mar Pollut Bull 63(5–12):179–188

    Article  CAS  Google Scholar 

  • Yadav J, Wallace R, Reddy C (1995) Mineralization of mono-and dichlorobenzenes and simultaneous degradation of chloro-and methyl-substituted benzenes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61(2):677–680

    CAS  Google Scholar 

  • Zhang K, Wan Y, Giesy JP, Lam MHW, Wiseman S, Jones PD, Hu J (2010) Tissue concentrations of polybrominated compounds in Chinese sturgeon (Acipenser sinensis): origin, hepatic sequestration, and maternal transfer. Environ Sci Technol 44(15):5781–5786

    Article  CAS  Google Scholar 

  • Zhou J, Chen J, Liang CH, Xie Q, Wang YN, Zhang S, Qiao X, Li X (2011) Quantum chemical investigation on the mechanism and kinetics of PBDE photooxidation by OH: a case study for BDE-15. Environ Sci Technol 45(11):4839–4845

    Article  CAS  Google Scholar 

  • Zuo Y, Jones RD (1997) Photochemistry of natural dissolved organic matter in lake and wetland waters—production of carbon monoxide. Water Res 31(4):850–858

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science foundation of China (no. 20977044), and the National Basic Research Program of China (973 Program) (2009CB421604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixiang Gao.

Additional information

Responsible editor: Markus Hecker

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Mao, L., Chen, Y. et al. Ligninase-mediated transformation of 4,4′-dibromodiphenyl ether (BDE 15). Environ Sci Pollut Res 20, 6667–6675 (2013). https://doi.org/10.1007/s11356-013-1847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1847-y

Keywords

Navigation