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Abstract
Background Deep learning-based digital image correlation (DL-based DIC) has gained increasing attention in the last two 
years. However, existing DL-based DIC algorithms are impractical because their application scenarios are mostly limited 
to small deformations.
Objective To enable the use of DL-based DIC in real-world general experimental mechanics scenarios that would involve 
large deformations and rotations, we propose to improve DL-based DIC with the domain decomposition method (DDM).
Methods In the improved method, the region of interest is divided into subimages, and subimages are pre-aligned using the 
preregistered control points to effectively eliminate the large deformation components. The residual deformations in each 
subimage are small and limited, which can be well extracted using existing DL-based DIC methods.
Results Through synthesized and real-world experiments, the improved DL-based DIC method can achieve high-accuracy 
pixelwise matching in practical applications with strong robustness and high computational efficiency.
Conclusions The improved DL-based DIC combines the advantages of traditional and DL-based DIC methods but overcomes 
the limitations, greatly improving the robustness and applicability of existing DL-based methods.

Keywords Digital image correlation · Deep learning · Domain decomposition method

Introduction

Digital Image Correlation (DIC) is a non-contact, full-
field deformation measurement technique that extracts 
surface deformation by analyzing digital images of an 
object acquired at different states [1–3]. As a revolution-
ary photo-mechanics technique, DIC has been widely used 
in various scientific disciplines and engineering prac-
tices. Traditional DIC algorithms, in essence, are physical 
model-based numerical optimization methods. They either 
use shape functions to describe local deformation around 
discrete calculation points [4, 5] (i.e., local DIC) or adopt 
mesh to model deformation within the region of interest [6, 
7] (i.e., global DIC). Despite the widespread use of these 
traditional DIC algorithms, they are incapable of obtaining 
accurate pixelwise dense deformation fields, especially for 

complex deformation fields. It is for sure that one would 
use more calculation points in local DIC and finer mesh in 
Global DIC (known as h-refinement), or use models with 
more parameters like  2nd-order shape function [5] in local 
DIC and higher-order elements [8, 9] in global DIC (known 
as p-refinement). However, proper selection of the model 
parameters (subset size, grid step, shape function, element 
type, etc.) is generally considered to be tricky, and these 
model parameters still have limited description capacity of 
deformation. Let alone that model with higher description 
capacity usually contains more parameters to be optimized 
and requires hugely increased computation costs.

In recent years, widely successful applications of deep 
learning (DL) methods in various fields have inspired the 
introduction of DL methods into DIC. Different than the 
physical model-based methods that rely on explicit param-
eters, DL-based DIC methods characterize deformations 
through an implicit neural network model that contains a 
large number of parameters [10]. Therefore, it can handle 
more complex deformations with implicit neural representa-
tion and achieve pixelwise dense results without the need for 
model parameter selection. Specifically, Boukhtache et.al 
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first introduced DL into DIC and proposed the StrainNet 
[11, 12] based on the U-Net [13] architecture. Detailed com-
parison with the existing optical flow frameworks such as 
FlowNet [14] and PWC-Net [15] demonstrated that Strain-
Net achieves higher measurement accuracy in a specific dis-
placement range (less than 1 pixel), proving the feasibility of 
DL-based DIC methods. However, the measurement range 
of a DL-based method is limited by the generalization abil-
ity, which is affected by the covered displacement range of 
the dataset. If the measured displacement exceeds the range, 
the results may be unreliable or even erroneous.

To enhance the practicality of DL-based DIC method in 
handling larger displacement and diverse speckle patterns, 
two different ways can be adopted. The first straightforward 
approach is to use larger datasets covering wider varieties 
of deformations to gain higher generalization. For example, 
DeepDIC [16] uses grid deformation for datasets genera-
tion and DIC-Net [17] adopts the Hermite basis function 
to improve the continuity and enrich deformation modes 
in datasets. Also, the maximum displacement range is 
increased up to 16 pixels in DICNet [18]. However, increas-
ing the dataset coverage cannot break the limitation once and 
for all. Another approach involves cascading different net-
works to handle different displacement ranges, adopting the 
idea of coarse and fine search. For example, CNN-SDM [19] 
proposes to cascade two neural networks to extract displace-
ment of 0.1-pixel and 0.01-pixel levels respectively. Also, 
DVC-Net [20] uses three cascaded fully connected networks 
for integer pixel, sub-pixel, and sub-region denoising, which 
has been successfully applied in measuring cell traction 
force [21]. The same architecture with three fully connected 
networks is also adopted for 2D DIC [22].  R3-DICnet [23] 
adopted the base architecture of LiteFlowNet [24] and the 
similar gate recurrent unit (GRU) in RAFT [25] and trained 
on a dataset consisting of both small (5 pixels) and large 
displacement (up to 30 pixels), achieving a capability of 
large displacement measurement up to 30 pixels. Recently, 
for 3D-DIC measurement, StrainNet-3D [26] uses the affine 
transformation to pre-register the stereo image pair and uses 
two networks to extract subpixel displacements and refine 
displacements respectively, making it suitable for handling 
perspective deformations.

Existing research mainly focuses on improving measuring 
accuracy by enriching the dataset, optimizing network struc-
ture, or employing a pyramid strategy to integrate multi-
scale results. After fine-tuning, these DL-based methods 
can achieve results with comparable accuracy to traditional 
methods in the covered displacement range. However, in 
real-world application scenarios, the practicality of DL-
based methods is limited by two main factors, namely, the 
coverage of datasets (including the displacement range and 
the diversity of speckle pattern) and the compatibility of the 
input image sizes. Firstly, displacements often reach tens or 

even hundreds of pixels in real-world applications. Also, 
when high-resolution cameras are used, the displacements 
would be larger, which could be far beyond the range of 
datasets in existing DL-based methods, among which the 
maximum displacement is only 30 pixels [23]. Although 
expanding the coverage of a dataset can further improve 
generalization, it is impractical to encompass all possible 
testing scenarios with unknown large displacements. Moreo-
ver, a network trained on a dataset with larger displacements 
would show increased random errors when used to measure 
small displacements, which greatly prevents the practical 
application of DL-based DIC methods. Secondly, the sizes 
of input images are variable. To accommodate images with 
different resolutions, networks with fixed input sizes, as in 
[16, 20–22], often employ scaling or splitting strategies. 
However, scaling may affect the output accuracy, and split-
ting may yield unreliable results near the image bounda-
ries as the tracked pixel may extend beyond the subimage's 
boundaries. For those U-Net-based networks [11, 12, 17, 
26], although they do not strictly limit the input size, the 
measurable range is still limited by the receptive field of 
the network structure. A larger receptive field requires 
larger input images and deeper convolution layers, leading 
to higher training costs. Additionally, the difference in size 
between testing and training images would also affect output 
accuracy. In conclusion, to improve the practicality and gen-
eralization of DL-based DIC methods, one can continuously 
expand the dataset to cover different displacement ranges 
and various speckle patterns and can develop better network 
structures like RAFT [25] in optical flow tasks that have a 
global receptive field. It is important to note that these limits 
are inherent to data-driven DL methods. The marginal cost 
of retraining networks and modification is relatively high to 
further improve the performance.

Considering the locality of the DIC problem that the 
results of a point do not affect the results of other points, 
which is the fundamental logic of local DIC, this work 
adopts the idea of domain decomposition method (DDM) 
[27–29] to extend the measurement range of existing DL-
based DIC methods without modification or retraining and 
make them generally applicable in practical measurements. 
The proposed method decomposes the DIC (or image match-
ing) problem into two stages: 1) global large deformation 
(large displacement and rotation) removal, and 2) local small 
deformation refinement. In the global stage, the region of 
interest (ROI) is divided into subimages of a specific size 
using predefined control points. The deformed subimages 
are then pre-aligned using the transform calculated by the 
control points whose initial values are estimated using the 
method described in Ref [30]. After that, the residual dis-
placements in deformed subimages are small and limited, 
resulting in local problems with a fixed image size and lim-
ited displacement range. The local problems are suitable for 
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the existing DL-based DIC method to accurately extract the 
residual displacement components. Note that, the subimage 
size can be changed according to the training image size to 
achieve better accuracy when different DL-based DIC net-
works are used. By merging the preregistered large compo-
nents with the small components obtained by DL methods, 
refined full-field displacement fields can be obtained. The 
proposed method combines the advantages of traditional 
and DL-based DIC methods, thus can handle large displace-
ments without sacrificing accuracy in small displacements, 
greatly improving the practicality and robustness of DL-
based DIC methods.

The rest of this paper is organized as follows. Section 
"Improved DL-based DIC method" introduces the principle 
of the improved DL-based DIC method with DDM. In Sec-
tion "Experiments", a validation experiment is demonstrated 
to show the effectiveness and accuracy of measurement. 
Additionally, a real experiment with large deformation is 
presented, proving the practicability of the proposed method. 
Section "Conclusions and future works" concludes this work 
and provides an outlook for future works.

Improved DL‑based DIC method

Domain decomposition in DIC problem

DDM is a powerful numerical technique for solving finite 
element method (FEM) problems and has many applications 
in various scientific and engineering domains [27, 28]. It 
reduces the computational cost and memory requirement by 
dividing the domain into smaller subdomains and solving 
local problems on each subdomain. Thus, parallel comput-
ing can be performed to speed up the calculation. The key 
requirement of DDM is that the computation tasks within 

each subdomain are relatively independent, and the solu-
tions of each subdomain can be coordinated by exchanging 
boundary conditions.

In the DIC field, existing usage of DDM [29] focuses on 
solving the global equation with DDM method. However, 
the DIC problem has a strong locality that the displacement 
field requires only locally continuous without complex dif-
ferential constraints and the matching results within a sub-
domain do not affect the results of other subdomains. There-
fore, DDM could not only be used for solving the equation, 
but also be used to reform the calculation algorithm of DIC.

In this work, we adopt the idea of DDM to divide the 
ROI into small subimages and solve the local problem using 
DL-based DIC methods, then combine the local results of 
subimages into full-field results. To make full use of DL-
based DIC methods, the subimages should meet the follow-
ing requirements:

1. The displacement within each subimage should be small 
enough to be covered by the dataset. For example, when 
DICNet [18] where the maximum displacement is 16 
pixels is used, the maximum displacement within the 
subimages should be smaller than 16 pixels, or the out-
put results would be unreliable.

2. The size of subimages should be the same and small 
for higher performance with batch processing. Also, it 
should be properly chosen to ensure the compatibility 
with the DL-based DIC network.

To meet the first requirement, we proposed to pre-align 
the subimages with the control points pre-registered with the 
feature mesh interpolation method [30]. As shown in Fig. 1, 
the ROI is divided into subimages with control points evenly 
distributed with a step of 100 pixels. By using the 4 matched 
keypoint pairs, the perspective transformation between the 

Fig. 1  Schematic diagram of DL-based DIC calculation aided by the domain decomposition method
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reference and deformed subimages can be determined, rep-
resenting the large deformation components of a subimage. 
To remove the large components, the deformed subimage 
is transformed into the reference frame with the obtained 
perspective transformation. Subsequently, the residual defor-
mation components are small enough and limited in the sub-
image, thereby satisfying the first requirement.

As for the second requirement, the proposed DDM strat-
egy transforms the global problem into a set of standardized 
local problems with fixed input sizes and limited deforma-
tions. These standardized problems can be well solved by 
existing DL-based methods. To accommodate potential large 
displacements without exceeding the subimage border, an 
extra border is added to the subimages. This border also 
allows for more reliable results in the overlapped region by 
weighting results of different subimages.

As for the selection of the keypoint step and border size, 
these parameters are determined based on the size of the ROI. 
The keypoint step is typically chosen as a factor of the ROI 
size, helping to avoid incorporating irrelevant background 
into subimages. The border size should exceed the potential 
displacement in the local problem and is usually chosen in 
the range of 10 to 20 pixels, depending on the magnitude of 
deformation and the measurement range of the DL-based DIC 
backend. For example, with an extra border of 14 pixels, the 
total size of a subimage is 128×128 pixels, which can be easily 
handled by most existing DL-based DIC networks.

DL‑based DIC network for local  
displacement extraction

With the help of the DDM, the DIC backend could concen-
trate on the standardized local problem without the need 
for adaption and training for large displacements. The local 
problems can be effectively addressed by any existing DL-
based DIC method mentioned before. However, in this work, 
we adopt an advanced optical flow network known as RAFT 
[25] to address the local problem. RAFT, with its larger 
receptive field and efficient utilization of prior information, 
outperforms existing U-Net-based networks. To enhance 
its performance for local problems with small input images 
(less than 256×256 pixels), several modifications have been 
made to the RAFT network, including refining the encoding 
module to capture more spatial information and reducing the 
channel number to achieve higher output resolution.

A dataset comprising various speckle patterns, deforma-
tions, noise levels, and lighting variations is generated and 
used for training the network. Consequently, the improved 
RAFT-based network achieves higher displacement registra-
tion accuracy for local problems and demonstrates better gen-
eralization ability. Nevertheless, we should note that this work 
focuses on the DDM strategy of extending the measurement 
range of DL-based DIC networks. Details and performance 

evaluations of the proposed improved RAFT-based network 
would be presented in another work named “RAFT-DIC”.

Displacement field merging and boundary processing

With the DL-based DIC methods, the displacement field 
between reference subimages and deformed subimages can be  
efficiently calculated in batches using the powerful DL frame-
works. However, the large displacement field obtained by the 
perspective transformation and the small displacement field 
obtained by DL-based methods cannot be directly added. They 
should be composed, as schematically shown in Fig. 2, The 
perspective transformation P that transforms a control point 
(x�

i
, y�

i
), i = 1..4 in the deformed subimage to its matched loca-

tion in the reference subimage (xi, yi) can be expressed as:

where λ is an arbitrary scale factor and (xi, yi, 1)
T  is the 

homogeneous coordinates. The perspective matrix P is 3×3 
but only has 8 degrees of freedom due to the arbitrary scale 
factor. It can be uniquely solved with 4 control points as each 
point can provide 2 constraints.

For a point (x, y) in reference subimage, its corresponding 
point in the deformed subimage is (xd, yd) , and its coordinates 
after perspective transformation in the warped subimage is 
(xw, yw) . The local displacement between the warped location 
and the reference location is (ul, vl) , which is obtained from 
DL-based DIC methods. Then the corresponding point in the 
deformed subimage (xd, yd) is calculated using the inverse 
transform:

The merged total displacement field within a subimage 
is obtained by subtracting the corresponding point in the 
deformed subimage from the reference subimage, which 
is expressed as:
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Fig. 2  Schematic diagram of displacement merging
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Because a border was reserved when splitting the ROI, 
the overlapped region between subimages may contain 
more than one value from different subimages. Further 
processing of the overlapped region is required to obtain 
final results, as the data near the image edge in DL-
based methods is less reliable. In this context, we use the 
weighted value of the overlapped region, with the weights 
determined by the shape function of linear elements in 
FEM. As shown in Fig. 3, in the overlapped region, we 
use the local normalized coordinates (�, �) to determine 
the weights. In an overlapped region of 2 subimages, the 
weights can be expressed as:

(3)
u = xd − x

v = yd − y

(4)N0 =
1

2
(1 − �),N1 =

1

2
(1 + �)

where N0 and N1 are the weights of the two subimages. For 
the overlapped region of 4 subimages, the weights can be 
expressed as:

The weighted average value of the overlapped region 
can be expressed as:

where n is the number of subimages in the overlapped 
region, ui is the displacement values of the i-th subimage.

Experiments

Validation experiments using synthesized image

In this experiment, a synthesized image pair was generated and 
used to validate the proposed method. As shown in Fig. 4(c), 
an image with printed speckles is set as the reference image. 
A synthesized displacement field is applied to the reference 
image. The displacement field consists of a large and a small 
sinusoidal displacement components shown in Fig. 4(a) and 
(b), respectively, where the largest displacement reaches 115 
pixels and the small sinusoidal displacement field is used for 
accuracy testing. The total displacement field is expressed as:

(5)Ni =
1

4
(1 + �i�)(1 + �i�), i = 1..4

(6)u =

n∑

i=1

uiNi
Fig. 3  Weights determination of the overlapped region

Fig. 4  (a) the large displacement components, (b) the sinusoidal small components, (c) the reference image, (d) the applied displacements and 
(e) the synthesized image
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where, u(x, y) is the horizontal displacement field, x and y 
are the image coordinates. Fig. 4(d) presents the applied dis-
placement field, which is challenging for existing DL-based 
DIC methods to handle such large displacements. The fre-
quency characteristic containing two frequency components 
also poses challenges for traditional local DIC algorithms 
with fixed subset sizes. Gaussian noise with a standard 
deviation of 3 gray levels is added to both the reference and 
synthesized deformed image, as shown in Fig. 4 (c) and (e). 
These images are used in subsequent experiments.

Considering the period of the applied small displace-
ment field (32 pixels), we employ three subset sizes (31×31, 
21×21, and 11×11 pixels) to demonstrate the performance 
of standard local DIC with different subset sizes. For com-
parison, the grid step in local DIC analysis is set to 1 pixel. 
The measured displacement fields and the measurement 
errors, obtained through local DIC method with different 
subset sizes and the improved DL-based DIC method, are 
shown in Fig. 5. When using a subset size of 31×31 pixels, 
which is close to the frequency of sinusoidal component, the 
measured displacement field fails to recognize this compo-
nent, leading to undermatched errors. The magnitude of this 
undermatched error decreases as the subset size decreases 

(7)u(x, y) = 0.2x + 0.1y + sin

(
2�x

32

) [31]. Specifically, adopting a subset size of 21×21 pixels 
reduces the undermatched error by approximately half, and 
the undermatched error can be further reduced with a smaller 
subset size (11×11 pixels). Nevertheless, further reduction 
in the subset size is not feasible due to the limitation of the 
average speckle size (7 pixels). During testing, attempts with 
smaller subsets, such as 9×9 or 7×7 pixels, proved unsuc-
cessful in extracting the displacement field. This failure is 
attributed to the smaller subsets that lack sufficient unique 
speckle pattern information to reliably track the displace-
ments. Moreover, the use of smaller subsets would introduce 
higher random errors, as indicated in previous studies [32].

For the improved DL-based DIC method, as marked in 
Fig. 6, the control points with a step of 50 pixels divide 
the ROI into 2×7 small subimages, and an extra border is 
set to 10 pixels. These parameters yield a series of subim-
ages of 70×70 pixels. The results obtained with the pro-
posed improved DL-based DIC method are shown in the last 
row of Fig. 5. The maximum error is less than 0.2 pixels, 
showing better performance (50% lower) than the local DIC 
method with an 11×11 subset size. Note that errors are still 
present, which can be attributed to the perspective warping 
and the inherent noise of the DL framework. Employing 
better dataset and network architecture would reduce this 
bias and further enhance accuracy. Compared with local DIC 

Fig. 5  Measured displacement and corresponding error maps using local DIC method with different subset sizes and the improved DL-based 
DIC method
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methods, the proposed DDM strategy enables the DL-based 
DIC method to handle the large displacement without losing 
accuracy in high-frequency components. Moreover, it offers 
the advantage of accurate measurement without the need 
for parameter selection, providing a more convenient and 
efficient approach.

The measured components in two stages of the improved 
DL-based DIC method are shown in Fig. 7. In the first row, 
the large displacement component modeled by the perspec-
tive transformation of control points shows the same pattern 
with applied large displacement while the high-frequency 
components are screened out, while the difference of the 
large components are less than 1 pixel. Along with the 
small components, the maximum potential displacements 
in the local problems would be less than 2 pixels. The small 
displacement component is obtained after processing with 
the DL-based DIC methods. As shown in the second row 

of Fig.  7, the same sinusoidal pattern is obtained, and the 
maximum displacement in the local stage is less than 1.5 
pixels, indicating that the large displacement components 
are almost removed in the first stage. The differences in the 
small components exhibit a reverse pattern to that of the 
large components, resulting in a smaller overall error shown 
in the last row of Fig. 7. This demonstrates that the errors 
introduced by perspective transformation and the small com-
ponents could be compensated by the DL-based methods. 
These results strongly prove that the proposed method can 
effectively separate different frequency components and can 
handle large displacements without sacrificing the accuracy 
of high-frequency fine displacement field.

For a comparative analysis with local DIC, Fig. 8 illus-
trates the error distributions of the two methods. In Fig. 8(a), 
the error distributions of the local DIC method with differ-
ent subset sizes are presented. The bimodal distribution is 

Fig. 6  The reference image and 
the synthesized image marked 
with control points

Fig. 7  Displacement components extracted by the improved DL-based DIC method, and the differences compared to the applied displacements
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observed in the error distribution of local DIC, which arises 
from the undermatched error when measuring the sinusoidal  
displacement components. As the subset size decreases, the 
error distribution becomes more concentrated around zero. 
Fig. 8(b) shows the best case of local DIC (11×11 pixels) and 
the error distribution of the proposed method. Different from 
local DIC, the error of the DL-based DIC method shows a 
Gaussian distribution and higher concentration, owing to the 
inherent characteristics of neural networks. This highlights 
the ability of DL-based methods to accommodate various 
deformations without being significantly impacted by sys-
tematic undermatched errors. It is noteworthy that extracting 
different spatial frequencies using a standard DIC method 
with a fixed grid step can be challenging. Similarly, extract-
ing high-frequency components using a predefined subset  

size is also difficult. Results show that the proposed DDM 
strategy effectively measures the full-field complex dis-
placements and achieves better accuracy than the standard 
local DIC method without requiring parameter selection, 
thus affirming the feasibility and effectiveness of the pro-
posed method.

Large deformation measurement  
of a polyurethane beam

The proposed method with the DDM scheme was applied 
to measure the large deformation of a polyurethane beam. 
The beam is 20×40×500mm in size, and the ROI is on the 
narrow side with a size of 200×20mm. The speckle is pre-
made by water transfer printing, which is soft and can stand 

Fig. 8  (a) The error distribution of local DIC with different subset sizes, (b) the error distribution of local DIC with 11×11 pixels subset size and 
the improved DL-based DIC method

Fig. 9  The reference image 
and the deformed image with 
control points marked
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with relatively large deformation without tearing. Images are 
captured by an industrial camera (FLIR-GS3-U3-28S4M-C, 
sensors: 1/1.2″, active pixels:1928×1448) with an industrial 
lens (Computar, 25mm, F/1.4) facing the surface of the spec-
imen. As shown in Fig. 9, the beam undergoes significant 
bending deformation with the applied displacement con-
straint. The preregistered control points divide the ROI into 
10 subdomains along the horizontal direction. The grid step 
of control points is 150 pixels, and the border is chosen to 
be 20 pixels, therefore, each subimage has a size of 190×190 
pixels. The maximum displacement of the imposed large 
deformation is about 360 pixels, exceeding the boundary 
of the subimage. This large deformation cannot be directly 
processed by the existing DL-based methods.

With the proposed method, deformed subimages are 
preregistered by the control points and warped back using 
the inverse perspective transform. In Fig. 10, the first row 
shows the reference subimages while the second rows show 
the corresponding deformed subimages. After removing 
large deformation with perspective transformation, the 
warped deformed subimages are shown in the last row of 
Fig. 10. It is evident that the large deformation has been 
effectively removed, resulting in a much smaller residual 

deformation. Through the proposed method, the obtained 
local problems shown in Fig. 10 are much easier in com-
parison to the original problems that contained large dis-
placement components.

The subimages with the same size are batch-processed 
using the improved DL-based methods. To briefly present 
the result details, only the data within the range of 400 
to 800 pixels of the extracted vertical displacement field 
are shown in Fig. 11(a) and (b). The different perspective 
transformations in subimages result in discontinuities as 
marked in Fig. 11(a). However, this discontinuity is effec-
tively addressed by DL-based DIC methods. The merged 
displacement field is presented in Fig. 11(c), where the 
discontinuities have been effectively compensated. The 
subtraction of the merged field and the large component, 
i.e., the additive small component, is shown in Fig. 11(d). 
Compared with Fig. 11(b), it is crucial to note that the 
merging process is not a simple addition, as it would lead 
to a loss in accuracy. As shown in Fig. 11(b), the maxi-
mum local displacement is less than 1 pixel, but it could 
compensate more as shown in Fig. 11(d) after the inverse 
perspective transformation, which further demonstrates the 
effectiveness of the proposed DDM strategy.

Fig. 10  Reference subimages and deformed subimages with inverse perspective transformation

Fig. 11  (a) The extracted large component and (b) the small component of V field, (c) the merged total V field, and (d) the additive small com-
ponent of V field
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After merging the results of the DL-based method and 
the field of inverse perspective transformation, the total dis-
placement fields of U and V are shown in Fig. 12(b) and (d). 
Despite the largest displacement exceeding 360 pixels, the 
improved DL-based DIC method perfectly recovers the large 
deformation of the polyurethane beam. For comparison, the 
results of the standard local DIC method with subset size of 
31×31 pixels and 1 pixel grid step are shown in Fig. 12(a) 
and (c). The results of the two methods are mostly identical, 
except for some mismatches, which have been marked and 
zoomed in for closer examination. These mismatches are 
inevitable in real-world experiments due to the highlights, 
noises, cracks, etc. However, in the proposed methods, the 
results are smooth and have no mismatches in the same 
region where highlights exist, as demonstrated below. It's 
noteworthy that this task is a big challenge for any other DL-
based method, even for the most advanced optical flow algo-
rithm like RAFT. Moreover, the ROI is 150×1500 pixels, 

which took more than 3s for the advanced parallel local DIC 
[30] to compute the pixelwise results while the proposed 
methods took only 228ms, with 78ms used for control point 
registration. The running time difference will be more pro-
nounced when the image size is further increased because 
the running time of DL networks would increase at a much 
lower ratio thanks to the batch processing power of DL.

To further demonstrate the matching quality of the pro-
posed method, we adopted the gray level residual (GLR) 
field [33–35], which reflects match quality and highlights 
mismatched areas with intuitive visual cues. Fig. 13(a) 
represents the original reference image. The calculation 
of the GLR field has been adjusted for the dense displace-
ment obtained by DL-based methods where the deformed 
image is warped by the dense displacement fields, as shown 
in Fig. 13(b). As shown in Fig. 13(c), the GLR field only 
considers the displacement correction and keeps the residu-
als of lighting variation, which could help to identify the 

Fig. 12  Displacement field of different methods: (a) U field of DIC and (b) the proposed method, (c) V field of DIC and (d) the proposed 
method

Fig. 13  (a) reference image, (b) 
deformed image with displace-
ment correction and (c) gray 
level residual field of the match-
ing result
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residuals of different types. In the GLR field, residuals in 
most areas are at a low level and areas with high residu-
als have been marked out. Residuals in the upper part, 
caused by illumination variation, are smoothly distributed 
and lower than 50 grayscales. In the lower part, highlights 
caused by reflective light are observed in both the reference 
and deformed images. These highlights may lead to residu-
als greater than 100 grayscales. Both the lighting variation 
and highlights may cause errors for DL-based methods 
if these factors are not included in the dataset. However, 
in this work, the adopted improved RAFT trained with a 
dataset of high-quality shows reliable performance in this 
challenging task, proving the robustness and practicality of 
the proposed method in real-world experiments.

Conclusions and future works

This work proposes an improved DL-based DIC method 
using the idea of the domain decomposition method, which 
greatly extends the robustness and practicality of existing 
DL-based DIC. The proposed method decomposes the 
DIC matching problem into two stages, i.e., large deforma-
tion removal and small deformations extraction. The ROI 
is divided into subimages using the pre-registered control 
points, then the large deformation is removed by perspective 
transformation. The residual small deformation can be easily 
extracted with the existing DL-based method. The proposed 
method has several advantages:

1. The proposed method can be applied in real-world 
experiments that would involve large deformations. It 
removes the large deformations and standardizes the 
local problems into subimages with fixed input size and 
limited deformation. It brings the same adaptability and 
applicability as the standard local DIC method and the 
same accuracy and efficiency as the DL-based meth-
ods. The proposed method can obtain full field pixelwise 
results in general measurement tasks without sacrificing 
accuracy in small deformation. It also reduces the cost 
of memory and computer resources, breaking the limita-
tions of existing DL-based methods.

2. The proposed method contains two stages and is com-
posable, different initial value estimation methods and 
DL-based methods can be used in the proposed method. 
It extends the application ranges of existing DL-based 
networks to real-world experiment scenarios without 
complex modification and retraining, improving the 
general applicability of existing DL-based methods.

Future work can be carried out in the following aspects. 
First, new DL networks can be tested and optimized on 

standardized local problems to realize higher accuracy and 
adaptability. Second, a DL-based initial value estimation 
method for large displacement can be adopted to realize 
an end-to-end DL-based DIC solution. Third, the proposed 
DDM strategy is not exclusive to DL-based methods. The 
local problems can also be solved with traditional methods 
such as local DIC or global DIC, and they can also benefit 
from the advantages offered by the DDM strategy.
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