Skip to main content
Log in

Hierarchical Bayes Models for Response Time Data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Human response time (RT) data are widely used in experimental psychology to evaluate theories of mental processing. Typically, the data constitute the times taken by a subject to react to a succession of stimuli under varying experimental conditions. Because of the sequential nature of the experiments there are trends (due to learning, fatigue, fluctuations in attentional state, etc.) and serial dependencies in the data. The data also exhibit extreme observations that can be attributed to lapses, intrusions from outside the experiment, and errors occurring during the experiment. Any adequate analysis should account for these features and quantify them accurately. Recognizing that Bayesian hierarchical models are an excellent modeling tool, we focus on the elaboration of a realistic likelihood for the data and on a careful assessment of the quality of fit that it provides. We judge quality of fit in terms of the predictive performance of the model. We demonstrate how simple Bayesian hierarchical models can be built for several RT sequences, differentiating between subject-specific and condition-specific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, S., & Heathcote, A. (2001). Distinguishing common and task-specific processes in word identification: a matter of some moment? Journal of Experimental Psychology: Learning, Memory and Cognition, 27, 514–544.

    Article  Google Scholar 

  • Barnett, V., & Lewis, T. (1994). Outliers in statistical data (3rd ed.). New York: Wiley.

    Google Scholar 

  • Belin, T.R., & Rubin, D.B. (1995). The analysis of repeated-measures data on schizophrenic reaction times using mixture models. Statistics in Medicine, 14, 747–768.

    Article  PubMed  Google Scholar 

  • Borowsky, A., Oron-Gilad, T., & Parmet, Y. (2009). Age and skill differences in classifying hazardous traffic scenes. Transportation Research Part F: Traffic Psychology and Behaviour, 12, 277–287.

    Article  Google Scholar 

  • Brillinger, D. (1994). Some river wavelets. Environmetrics, 5, 211–220.

    Article  Google Scholar 

  • Brown, S.D., Marley, A.A.J., Donkin, C., & Heathcote, A. (2008). An integrated model of choices and response times in absolute identification. Psychological Review, 115, 396–425.

    Article  PubMed  Google Scholar 

  • Craigmile, P.F., Guttorp, P., & Percival, D.B. (2004). Trend assessment in a long memory dependence model using the discrete wavelet transform. Environmetrics, 15, 313–335.

    Article  Google Scholar 

  • Dawid, A. (1984). Present position and potential developments: some personal views: statistical theory: the prequential approach. Journal of the Royal Statistical Society. Series A, 147, 278–292.

    Article  Google Scholar 

  • Farrell, S., Wagenmakers, E.-J., & Ratcliff, R. (2006). 1/f noise in human cognition: is it ubiquitous, and what does it mean? Psychonomic Bulletin & Review, 13, 737–741.

    Article  Google Scholar 

  • Geisser, S., & Eddy, W.F. (1979). A predictive approach to model selection (Corr: V75 p. 765). Journal of the American Statistical Association, 74, 153–160.

    Article  Google Scholar 

  • Gelfand, A. (1996). Model determination using sampling-based methods. In Gilks, W., Richardson, S., & Spiegelhalter, J. (Eds.), Monte Carlo in practice (pp. 145–162). Boca Raton: Chapman and Hall.

    Google Scholar 

  • Gilden, D.L. (1997). Fluctuations in the time required for elementary decisions. Psychological Science, 8, 296–301.

    Article  Google Scholar 

  • Gilden, D.L. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108, 33–56.

    Article  PubMed  Google Scholar 

  • Gottlob, L.R. (2004). Location cuing and response time distributions in visual attention. Perception and Psychophysics, 66, 1293–1302.

    Article  PubMed  Google Scholar 

  • Heathcote, A., Brown, S., & Mewhort, D.J.K. (2000). The power law repealed: the case for an exponential law of practice. Psychonomic Bulletin and Review, 7, 185–207.

    PubMed  Google Scholar 

  • Heathcote, A., Popiel, S.J., & Mewhort, D.J. (1991). Analysis of response time distributions: an example using the stroop task. Psychological Bulletin, 109, 340–347.

    Article  Google Scholar 

  • Heiervang, E., & Hugdahl, K. (2003). Impaired visual attention in children with dyslexia. Journal of Learning Disabilities, 36, 68–73.

    Article  PubMed  Google Scholar 

  • Hohle, R.H. (1965). Inferred components of reaction time as a function of foreperiod duration. Journal of Experimental Psychology, 69, 382–386.

    Article  PubMed  Google Scholar 

  • Holden, J.G., Van Orden, G.C., & Turvey, M.T. (2009). Dispersion of response times reveals cognitive dynamics. Psychological Review, 116, 318–342.

    Article  PubMed  Google Scholar 

  • Jones, M., Love, B.C., & Maddox, W.T. (2006). Recency effects as a window to generalization: separating decisional and perceptual sequential effects in category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 316–332.

    Article  PubMed  Google Scholar 

  • Kello, C.T., Anderson, G.G., Holden, J.G., & Van Orden, G.C. (2008). The pervasiveness of 1/f scaling in speech reflects the metastable basis of cognition. Cognitive Science: A Multidisciplinary Journal, 32, 1217–1231.

    Article  Google Scholar 

  • Kiefer, A.W., Riley, M.A., Shockley, K., Villard, S., & Van Orden, G.C. (2009). Walking changes the dynamics of cognitive estimates of time intervals. Journal of Experimental Psychology: Human Perception and Performance, 35, 1532–1541.

    Article  PubMed  Google Scholar 

  • Laming, D. (1968). Information theory of choice-response times. London: Academic Press.

    Google Scholar 

  • Luce, R.D. (1986). Response times: their role in inferring elementary mental organization. New York: Oxford University Press.

    Google Scholar 

  • Meeter, M., & Olivers, C.N.L. (2006). Intertrial priming stemming from ambiguity: a new account of priming in visual search. Visual Cognition, 13, 202–222.

    Article  Google Scholar 

  • Müller, P., & Vidakovic, B. (1999a). Bayesian inference in wavelet-based models. New York: Springer.

    Google Scholar 

  • Müller, P., & Vidakovic, B. (1999b). MCMC methods in wavelet shrinkage. In Müller, P., & Vidakovic, B. (Eds.), Bayesian inference in wavelet-based models (pp. 187–202). New York: Springer.

    Google Scholar 

  • Myung, I.J., Kim, C., & Pitt, M.A. (2000). Toward an explanation of the power law artifact: insights from response surface analysis. Memory and Cognition, 28, 832–840.

    Article  Google Scholar 

  • Newell, A., & Rosenblum, P. (1981). Mechanisms of skill acquisition and the law of practice. In Anderson, J.R. (Ed.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale: Erlbaum.

    Google Scholar 

  • Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction-time. Psychological Bulletin, 89, 133–162.

    Article  Google Scholar 

  • Peña, D., Tiao, G.C., & Tsay, R.S. (2001). A course in time series analysis. New York: Wiley.

    Google Scholar 

  • Penner-Wilger, M., Leth-Steensen, C., & LeFevre, J.-A. (2002). Decomposing the problem-size effect: a comparison of response time distributions across cultures. Memory and Cognition, 30, 1160–1167.

    Article  Google Scholar 

  • Percival, D., & Walden, A. (2000). Wavelet methods for time series analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Peruggia, M. (2008). Bayesian model diagnostics based on artificial autoregressive errors. Bayesian Analysis, 2, 817–842.

    Google Scholar 

  • Peruggia, P., Van Zandt, T., & Chen, M. (2002). Was it a car or a cat I saw? An analysis of response times for word recognition. In Case studies in Bayesian statistics (Vol. 6, pp. 319–334). New York: Springer.

    Google Scholar 

  • Plummer, M. (2009). JAGS Version 1.0.3 manual. http://www-ice.iarc.fr/~martyn/software/jags/jags_user_manual.pdf.

  • Pressing, J., & Jolley-Rogers, G. (1997). Spectral properties of human cognition and skill. Biological Cybernetics, 76, 339–347.

    Article  PubMed  Google Scholar 

  • Querne, L., & Berquin, P. (2009). Distinct response time distributions in attention deficit hyperactivity disorder subtypes. Journal of Attention Disorders, 13, 66–77.

    Article  PubMed  Google Scholar 

  • Rabbitt, P.M.A. (1966). Errors and error-correction in choice-response tasks. Journal of Experimental Psychology, 71, 264–272.

    Article  PubMed  Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.

    Article  Google Scholar 

  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532.

    Article  PubMed  Google Scholar 

  • Ratcliff, R., & Smith, P.L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111, 333–367.

    Article  PubMed  Google Scholar 

  • Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23, 470–472.

    Article  Google Scholar 

  • Rotello, C.M., & Zeng, M. (2008). Analysis of RT distributions in the remember-know paradigm. Psychonomic Bulletin and Review, 15, 825–832.

    Article  PubMed  Google Scholar 

  • Rouder, J., Sun, D., Speckman, P., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 589–606.

    Article  Google Scholar 

  • Rouder, J.N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (2005). A hierarchical model for estimating response time distributions. Psychonomic Bulletin and Review, 12, 195–223.

    PubMed  Google Scholar 

  • Shakow, D. (1977). Segmental set: the adaptive process in schizophrenia. American Psychologist, 32, 129–139.

    Article  PubMed  Google Scholar 

  • Steinhauser, M., & Hübner, R. (2009). Distinguishing response conflict and task conflict in the stroop task: evidence from ex-Gaussian distribution analysis. Journal of Experimental Psychology: Human Perception and Performance, 35, 1398–1412.

    Article  PubMed  Google Scholar 

  • Stevens, C.J., Brennan, D., Petocz, A., & Howell, C. (2009). Designing informative warning signals: effects of indicator type, modality, and task demand on recognition speed and accuracy. Advances in Cognitive Psychology, 5, 42–48.

    Article  Google Scholar 

  • Stewart, N., Brown, G.D.A., & Chater, N. (2005). Absolute identification by relative judgment. Psychological Review, 112, 881–911.

    Article  PubMed  Google Scholar 

  • Sullivan, J.M., Tsimhoni, O., & Bogard, S. (2008). Warning reliability and driver performance in naturalistic driving. Human Factors, 50, 845–852.

    Article  PubMed  Google Scholar 

  • Thornton, T.L., & Gilden, D.L. (2005). Provenance of correlations in psychological data. Psychonomic Bulletin and Review, 12, 409–441.

    Article  PubMed  Google Scholar 

  • Treisman, M., & Williams, T.C. (1984). A theory of criterion setting with an application to sequential dependencies. Psychological Review, 91, 68–111.

    Article  Google Scholar 

  • Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal of Experimental Psychology: General, 123, 34–80.

    Article  Google Scholar 

  • van der Linden, W.J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72, 287–308.

    Article  Google Scholar 

  • Van Orden, G.C., Holden, J.G., & Turvey, M.T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132, 331–350.

    Article  Google Scholar 

  • Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. Quarterly Journal of Experimental Psychology, 47, 631–650.

    Google Scholar 

  • Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin and Review, 14, 1011–1026.

    Article  PubMed  Google Scholar 

  • Vidakovic, B. (1998). Statistical modeling by wavelets. New York: Wiley.

    Google Scholar 

  • Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/f noise in human cognition. Psychonomic Bulletin & Review, 11, 579–615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Craigmile.

Additional information

This work is supported by the National Science Foundation under award numbers BCS-0738059, DMS-0604963, DMS-0605052, SES-0214574 and SES-0437251.

The authors would like to thank and acknowledge assistance in the early stages of this project from Emily Johnson, Dartmouth College (REU student sponsored by the National Science Foundation under award No. DMS-9988006) and Maria Salotti, University of Wisconsin at Stevens Point (REU student sponsored by the Department of Statistics and the College of Mathematical and Physical Sciences of The Ohio State University).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craigmile, P.F., Peruggia, M. & Van Zandt, T. Hierarchical Bayes Models for Response Time Data. Psychometrika 75, 613–632 (2010). https://doi.org/10.1007/s11336-010-9172-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-010-9172-6

Keywords

Navigation