Skip to main content
Log in

Hierarchical Hidden Markov Models for Response Time Data

  • Original Paper
  • Published:
Computational Brain & Behavior Aims and scope Submit manuscript

Abstract

Psychological data, particularly measurements obtained sequentially in experiments designed to test theories of human cognition, are often treated as independent and identically distributed samples from a single distribution that describes the cognitive process. This assumption is made for mathematical and analytic convenience; it is widely appreciated that such data are in fact mixtures from two or more processes, only a subset of which are associated with the cognitive process of interest. Our modeling framework describes response times (RTs) as arising from a mixture of three distinct distributions. Transitions across the distributions are governed by a hidden Markov structure whose states produce either fast, average, or slow RTs. This process is nested within a second hidden Markov structure, producing an “environment” process that allows the distribution of the response modes to evolve due to both internal factors (such as fatigue and distractions) and external factors (such as changing task demands). We performed a detection experiment designed to elicit responses under three environments that mimic external conditions that influence latent response modes. We present our hierarchical model and demonstrate its fit on the experimental data. We also demonstrate the model’s fit in the case when external conditions were not manipulated as part of the experimental process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bastian, M., & Sackur, J. (2013). Mind wandering at the fingertips: automatic parsing of subjective states based on response time variability. Frontiers in Psychology, 4, 573.

    PubMed  PubMed Central  Google Scholar 

  • Beal, M. J., Ghahramani, Z., & Rasmussen, C. E. (2001). The infinite hidden Markov model. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, NIPS’01 (pp. 577–584). MIT Press.

  • Bhar, R., & Hamori, S. (2004). Hidden Markov models: applications to financial economics. New York: Springer.

    Google Scholar 

  • Borst, J. P., & Anderson, J. R. (2015). The discovery of processing stages: analyzing EEG data with hidden semi-Markov models. NeuroImage, 108, 60–73.

    PubMed  Google Scholar 

  • Craigmile, P. F., Peruggia, M., & Van Zandt, T. (2010). Hierarchical Bayes models for response time data. Psychometrika, 75, 613–632.

    Google Scholar 

  • Craigmile, P. F., Peruggia, M., & Van Zandt, T. (2012). A Bayesian hierarchical model for response time data providing evidence for criteria changes over time. In M. C. Edwards & R. C. MacCallum (Eds.), Current issues in the theory and application of latent variable models (pp. 42–61). New York: Taylor and Francis.

    Google Scholar 

  • Dillard, M. B., Warm, J. S., Funke, G. J., Funke, M. E., Victor S. Finomore, J., Matthews, G., Shaw, T. H., and Parasuraman, R. (2014). The sustained attention to response task (SART) does not promote mindlessness during vigilance performance. Human Factors, 56:1364–1379.

  • Falmagne, J. (1965). Stochastic models for choice reaction time with applications to experimental results. Journal of Mathematical Psychology, 2, 77–124.

    Google Scholar 

  • Falmagne, R. (1968). A direct investigation of hypothesis-making behavior in concept identification. Psychonomic Science, 13, 335–336.

    Google Scholar 

  • Foulsham, T., Farley, J., & Kingstone, A. (2013). Canadian journal of experimental psychology/revue canadienne de psychologie expérimentale. Human Factors, 61, 51–59.

    Google Scholar 

  • Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J., & Schooler, J. W. (2013). Window to the wandering mind: pupillometry of spontaneous thought while reading. Quarterly Journal of Experimental Psychology, 66, 2289–2294.

    Google Scholar 

  • Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. New York: Springer.

    Google Scholar 

  • Gales, M., & Young, S. (2007). The application of hidden Markov models in speech recognition. Foundations and Trends in Signal Processing, 1, 195–304.

    Google Scholar 

  • Gelman, A. (2007). Comment: Bayesian checking of the second levels of hierarchical models. Statistical Science, 22, 349–352.

    Google Scholar 

  • Hawkins, G., Mittner, M., Boekel, W., Heathcote, A., & Forstmann, B. (2015). Toward a model-based cognitive neuroscience of mind wandering. Neuroscience, 310, 290–305.

    PubMed  Google Scholar 

  • Hawkins, G. E., Mittner, M., Forstmann, B. U., & Heathcote, A. (2017). On the efficiency of neurally-informed cognitive models to identify latent cognitive states. Journal of Mathematical Psychology, 76, 142–155 Model-based Cognitive Neuroscience.

    Google Scholar 

  • Juang, B. H., & Rabiner, L. R. (1991). Hidden Markov models for speech recognition. Technometrics, 33, 251–272.

    Google Scholar 

  • Kim, S., Potter, K., Craigmile, P. F., Peruggia, M., & Van Zandt, T. (2017). A Bayesian race model for recognition memory. Journal of the American Statistical Association, 112, 77–91.

    Google Scholar 

  • Kofler, M. J., Sarver, D. E., Spiegel, J. A., Day, T. N., Harmon, S. L., & Wells, E. L. (2017). Heterogeneity in ADHD: neurocognitive predictors of peer, family, and academic functioning. Child Neuropsychology, 23, 733–759.

    PubMed  Google Scholar 

  • Kunkel, D., Potter, K., Craigmile, P. F., Peruggia, M., & Van Zandt, T. (2019). A bayesian race model for response times under cyclic stimulus discriminability. The Annals of Applied Statistics, 13, 271–296.

    Google Scholar 

  • Lindsen, J. P., & de Jong, R. (2010). Distinguishing between the partial-mapping preparation hypothesis and the failure-to-engage hypothesis of residual switch costs. Journal of Experimental Psychology: Human Perception and Performance, 36, 1207–1226.

    PubMed  Google Scholar 

  • Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.

    Google Scholar 

  • Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: a test of the instance theory of automaticity. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18, 883–914.

    PubMed  Google Scholar 

  • Majoros, W. (2007). Methods for computational gene prediction. Cambridge: Cambridge University Press.

    Google Scholar 

  • Meyer, D. E., Osman, A. M., Irwin, D. E., & Yantis, S. (1988). Modern mental chronometry. Biological Psychology, 26, 3–67.

    PubMed  Google Scholar 

  • Molenaar, D., & Boeck, P. (2018). Response mixture modeling: accounting for heterogeneity in item characteristics across response times. Psychometrika, 83, 279–297.

    PubMed  Google Scholar 

  • Nigg, J. T., Willcutt, E. G., Doyle, A. E., & Sonuga-Barke, E. J. (2005). Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Biological Psychiatry, 57, 1224–1230.

    PubMed  Google Scholar 

  • Ollman, R. (1966). Fast guesses in choice reaction time. Psychonomic Science, 6, 155–156.

    Google Scholar 

  • Palmer, E. M., Horowitz, T. S., Torralba, A., & Wolfe, J. M. (2011). What are the shapes of response time distributions in visual search? Journal of experimental psychology: Human perception and performance, 37, 58–71.

    Google Scholar 

  • Peruggia, M., Van Zandt, T., & Chen, M. (2002). Was it a car or a cat I saw? An analysis of response times for word recognition. In Case Studies in Bayesian Statistics (Vol. 6, pp. 319–334). New York: Springer.

    Google Scholar 

  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. In Proceedings of the IEEE (Vol. 7, pp. 257–286).

    Google Scholar 

  • Ranger, J., Wolgast, A., & Kuhn, J. (2018). Robust estimation of the hierarchical model for responses and response times. British Journal of Mathematical and Statistical Psychology, 72, 83–107.

    Google Scholar 

  • Rouder, J. N., Sun, D., Speckman, P. L., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 589–606.

    Google Scholar 

  • Rouder, J. N., Lu, J., Speckman, P., Sun, D., & Jiang, Y. (2005). A hierarchical model for estimating response time distributions. Psychonomic Bulletin and Review, 12, 195–223.

    PubMed  Google Scholar 

  • Sarkar, A., Chabout, J., Macopson, J. J., Jarvis, E. D., & Dunson, D. B. (2018). Bayesian semiparametric mixed effects Markov models with application to vocalization syntax. Journal of the American Statistical Association, 113(524), 1515–1527.

    Google Scholar 

  • Sederberg, P. (2016). SMILE: State Machine Interface Library for Experiments. Retrieved from https://github.com/compmem/smile/.

  • Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487–518.

    PubMed  Google Scholar 

  • Smith, M. R. (2017). Ternary: an R package for creating ternary plots. Zenodo. doi: https://doi.org/10.5281/zenodo.1068996.

  • Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2005). Sharing clusters among related groups: hierarchical Dirichlet processes. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in Neural Information Processing Systems 17 (pp. 1385–1392). MIT Press.

  • Thaler, N. S., Bello, D. T., & Etcoff, L. M. (2013). WISC-IV profiles are associated with differences in symptomatology and outcome in children with ADHD. Journal of Attention Disorders, 17(4), 291–301.

    PubMed  Google Scholar 

  • Tokuda, K., Nankaku, Y., Toda, T., Zen, H., Yamagishi, J., & Oura, K. (2013). Speech synthesis based on hidden Markov models. Proceedings of the IEEE, 101, 1234–1252.

    Google Scholar 

  • Vandekerckhove, J., Tuerlinckx, F., and Lee, M. (2008). A Bayesian approach to diffusion process models of decision-making. Pages 1429–1434. Cognitive science society; Austin, TX.

  • Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/f noise in human cognition. Psychonomic Bulletin & Review, 11, 579–615.

    Google Scholar 

  • Wang, Z., Chen, Y., & Li, Y. (2004). A brief review of computational gene prediction methods. Genomics, Proteomics & Bioinformatics, 2, 216–221.

    Google Scholar 

  • Yantis, S., & Meyer, D. E. (1988). Dynamics of activation in semantic and episodic memory. Journal of Experimental Psychology: General, 117, 130.

    Google Scholar 

  • Yellott, J. I. (1971). Correction for fast guessing and the speed-accuracy tradeoff in choice reaction time. Journal of Mathematical Psychology, 8, 159–199.

    Google Scholar 

  • Yoon, B.-J. (2009). Hidden Markov models and their applications in biological sequence analysis. Current Genomics, 10, 402–415.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant nos. SES-1024709, SES-1424481, and DMS-1407604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Kunkel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunkel, D., Yan, Z., Craigmile, P.F. et al. Hierarchical Hidden Markov Models for Response Time Data. Comput Brain Behav 4, 70–86 (2021). https://doi.org/10.1007/s42113-020-00076-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42113-020-00076-w

Keywords

Navigation