Skip to main content

Advertisement

Log in

Intermittent hypoxia BMSCs-derived exosomal miR-31-5p promotes lung adenocarcinoma development via WDR5-induced epithelial mesenchymal transition 

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Intermittent hypoxia (IH) is a factor involved in the incidence and progression of lung adenocarcinoma (LUAD). Bone marrow-derived bone mesenchymal stem cells (BMSCs)-derived exosomes are related to the promotion of tumor development. The objective of this experiment was to clarify the mechanism of exosomes from BMSCs in promoting the progression of LUAD induced by IH.

Methods

This study examined if IH BMSCS-derived exosomes affect the malignancy of LUAD cells in vitro. Dual-luciferase assays were conducted to confirm the target of miR-31-5p with WD repeat domain 5 (WDR5). We further investigated whether or not  exosomal miR-31-5p or WDR5 could regulate epithelial–mesenchymal transition (EMT). We determined the effect of IH exosomes using a tumorigenesis model in vivo.

Results

miR-31-5p entered into LUAD cells via exosomes. MiR-31-5p was greatly upregulated in IH BMSCs-derived exosomes compared with RA exosomes. Increased expression of exosomal miR-31-5p induced by IH was discovered to target WDR5 directly, increased activation of WDR5, and significantly facilitated EMT, thereby promoting LUAD progression.

Conclusions

The promoting effect of IH on LUAD is achieved partly through BMSCs-derived exosomal miR-31-5p triggering WDR5 and promoting EMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data for this study are available from the corresponding author.

References

  1. Eckert DJ, Malhotra A (2008) Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5(2):144–153. https://doi.org/10.1513/pats.200707-114MG

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martinez-Garcia MA, Campos-Rodriguez F, Duran-Cantolla J, de la Pena M, Masdeu MJ, Gonzalez M, Del Campo F, Serra PC, Valero-Sanchez I, Ferrer MJ, Marin JM, Barbe F, Martinez M, Farre R, Montserrat JM (2014) Obstructive sleep apnea is associated with cancer mortality in younger patients. Sleep Med 15(7):742–748. https://doi.org/10.1016/j.sleep.2014.01.020

    Article  PubMed  Google Scholar 

  3. Almendros I, Montserrat JM, Ramirez J, Torres M, Duran-Cantolla J, Navajas D, Farre R (2012) Intermittent hypoxia enhances cancer progression in a mouse model of sleep apnoea. Eur Respir J 39(1):215–217. https://doi.org/10.1183/09031936.00185110

    Article  CAS  PubMed  Google Scholar 

  4. Campos-Rodriguez F, Martinez-Garcia MA, Martinez M, Duran-Cantolla J, Pena Mde L, Masdeu MJ, Gonzalez M, Campo F, Gallego I, Marin JM, Barbe F, Montserrat JM, Farre R (2013) Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am J Respir Crit Care Med 187(1):99–105. https://doi.org/10.1164/rccm.201209-1671OC

    Article  PubMed  Google Scholar 

  5. Almendros I, Montserrat JM, Torres M, Dalmases M, Cabanas ML, Campos-Rodriguez F, Navajas D, Farre R (2013) Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea. Respir Physiol Neurobiol 186(3):303–307. https://doi.org/10.1016/j.resp.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  6. Chen A, Sceneay J, Godde N, Kinwel T, Ham S, Thompson EW, Humbert PO, Moller A (2018) Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene 37(31):4214–4225. https://doi.org/10.1038/s41388-018-0259-3

    Article  CAS  PubMed  Google Scholar 

  7. Liu L, Liu W, Wang L, Zhu T, Zhong J, Xie N (2017) Hypoxia-inducible factor 1 mediates intermittent hypoxia-induced migration of human breast cancer MDA-MB-231 cells. Oncol Lett 14(6):7715–7722. https://doi.org/10.3892/ol.2017.7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gutsche K, Randi EB, Blank V, Fink D, Wenger RH, Leo C, Scholz CC (2016) Intermittent hypoxia confers pro-metastatic gene expression selectively through NF-kappaB in inflammatory breast cancer cells. Free Radic Biol Med 101:129–142. https://doi.org/10.1016/j.freeradbiomed.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Song X, Wang X, Wei L, Liu X, Yuan S, Lv L (2010) Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. J Cell Biochem 111:554–563

    Article  CAS  PubMed  Google Scholar 

  10. Gu X, Zhang J, Shi Y, Shen H, Li Y, Chen Y, Liang L (2021) ESM1/HIF-1α pathway modulates chronic intermittent hypoxia-induced non-small-cell lung cancer proliferation, stemness and epithelial-mesenchymal transition. Oncol Rep 45(3):1226–1234

    Article  CAS  PubMed  Google Scholar 

  11. Torre LA, Siegel RL, Jemal A (2016) Lung cancer statistics. Adv Exp Med Biol 893:1–19

    Article  PubMed  Google Scholar 

  12. Denisenko TV, Budkevich IN, Zhivotovsky B (2018) Cell death-based treatment of lung adenocarcinoma. Cell Death Dis 9(2):117

    Article  PubMed  PubMed Central  Google Scholar 

  13. Falcone G, Felsani A, D’Agnano I (2015) Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res 34:32. https://doi.org/10.1186/s13046-015-0148-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191. https://doi.org/10.1038/mt.2012.180

    Article  CAS  PubMed  Google Scholar 

  15. Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K (2015) Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep 33(5):2176–2182. https://doi.org/10.3892/or.2015.3839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, Li G, Tang J, Xiang JA-O (2019) Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer 18(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang G, Ji X, Li P, Wang W (2022) Human bone marrow mesenchymal stem cell-derived exosomes containing microRNA-425 promote migration, invasion and lung metastasis by down-regulating CPEB1. Regen Ther 20:107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Jiang F, Wang Z, Tang L, Zou B, Xu P, Yu TA-O (2021) Hypoxic bone marrow mesenchymal cell-extracellular vesicles containing miR-328-3p promote lung cancer progression via the NF2-mediated Hippo axis. J Cell Mol Med 25(1):96–109

    Article  CAS  PubMed  Google Scholar 

  19. Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, Brunton VG, Pilarsky C, Winkler TH, Brabletz S, Stemmler MP, Brabletz T (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19(5):518–529

    Article  CAS  PubMed  Google Scholar 

  20. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22(5–6):396–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Terry SA-O, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP, Chouaib S (2017) New insights into the role of EMT in tumor immune escape. Mol Oncol 11(7):824–846

    Article  PubMed  PubMed Central  Google Scholar 

  22. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110

    Article  PubMed  Google Scholar 

  23. Carugo A, Genovese G, Seth S, Nezi L, Rose JL, Bossi D, Cicalese A, Shah PK, Viale A, Pettazzoni PF, Akdemir KC, Bristow CA, Robinson FS, Tepper J, Sanchez N, Gupta S, Estecio MR, Giuliani V, Dellino GI, Riva L, Yao W, Di Francesco ME, Green T, D’Alesio C, Corti D, Kang Y, Jones P, Wang H, Fleming JB, Maitra A, Pelicci PG, Chin L, DePinho RA, Lanfrancone L, Heffernan TP, Draetta GF (2016) In vivo functional platform targeting patient-derived xenografts identifies WDR5-Myc association as a critical determinant of pancreatic cancer. Cell Rep 16(1):133–147

    Article  CAS  PubMed  Google Scholar 

  24. Chen T, Li K, Liu Z, Liu J, Wang Y, Sun R, Li Z, Qiu B, Zhang X, Ren G, Xu Y, Zhang Z (2021) WDR5 facilitates EMT and metastasis of CCA by increasing HIF-1α accumulation in Myc-dependent and independent pathways. Mol Ther 29(6):2134–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan X, Chen S, Wu J, Lin J, Pan C, Ying X, Pan Z, Qiu L, Liu R, Geng R, Huang W (2017) PI3K/AKT-mediated upregulation of WDR5 promotes colorectal cancer metastasis by directly targeting ZNF407. Cell Death Dis 8(3):e2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ren J, Liu W, Li GC, Jin M, You ZX, Liu HG, Hu Y (2018) Atorvastatin attenuates myocardial hypertrophy induced by chronic intermittent hypoxia in vitro partly through miR-31/PKCε pathway. Curr Med Sci 38(3):405–412

    Article  CAS  PubMed  Google Scholar 

  27. Wu DM, Wen X, Han XR, Wang S, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ, Hu B, Lu J, Chen GQ, Zheng YL (2019) Bone marrow mesenchymal stem cell-derived exosomal microRNA-126-3p inhibits pancreatic cancer development by targeting ADAM9. Mol Ther Nucleic Acids 16:229–245. https://doi.org/10.1016/j.omtn.2019.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu H, Zhou J, Mei S, Wu D, Mu Z, Chen B, Xie Y, Ye Y, Liu J (2017) Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J Cell Mol Med 21(6):1228–1236. https://doi.org/10.1111/jcmm.13056

    Article  CAS  PubMed  Google Scholar 

  29. Qu Z, Wu J, Wu J, Luo D, Jiang C, Ding Y (2016) Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res 35(1):159. https://doi.org/10.1186/s13046-016-0430-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lasser C, Eldh M, Lotvall J (2012) Isolation and characterization of RNA-containing exosomes. J Vis Exp 59:e3037. https://doi.org/10.3791/3037

    Article  CAS  Google Scholar 

  31. Yu F, Liang M, Huang Y, Wu W, Zheng B, Chen C (2021) Hypoxic tumor-derived exosomal miR-31-5p promotes lung adenocarcinoma metastasis by negatively regulating SATB2-reversed EMT and activating MEK/ERK signaling. J Exp Clin Cancer Res 40(1):179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, Ponimaskin E, Schmiedl A, Yin X, Mayr M, Halder R, Fischer A, Engelhardt S, Wei Y, Schober A, Fiedler J, Thum T (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124(5):2136–2146. https://doi.org/10.1172/jci70577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren J, Liu W, Deng Y, Li GC, Pan YY, Xie S, Jin M, Liu HG (2017) Losartan attenuates aortic endothelial apoptosis induced by chronic intermittent hypoxia partly via the phospholipase C pathway. Sleep Breath 21(3):679–689. https://doi.org/10.1007/s11325-017-1479-4

    Article  PubMed  Google Scholar 

  34. Qi J, Zhou Y, Jiao Z, Wang X, Zhao Y, Li Y, Chen H, Yang L, Zhu H, Li Y (2017) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem 42(6):2242–2254. https://doi.org/10.1159/000479998

    Article  CAS  PubMed  Google Scholar 

  35. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, Xu X, Wang M, Qian H, Xu W (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315(1):28–37. https://doi.org/10.1016/j.canlet.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  36. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(26):1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song FA-O, Xuan Z, Yang X, Ye X, Pan Z, Fang Q (2020) Identification of key microRNAs and hub genes in non-small-cell lung cancer using integrative bioinformatics and functional analyses. J Cell Biochem 121(3):2690–2703

    Article  CAS  PubMed  Google Scholar 

  38. Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, Olokpa E, Zariff A, Gunaratne PH, Matzuk MM, Anderson ML (2010) Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res 70(5):1906–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Edmonds MD, Boyd KL, Moyo T, Mitra R, Duszynski R, Arrate MP, Chen X, Zhao Z, Blackwell TS, Andl T, Eischen CM (2016) MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest 126(1):349–364

    Article  PubMed  Google Scholar 

  40. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476. https://doi.org/10.1038/ncb1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C, Zhu G (2016) Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res 76(7):1770–1780. https://doi.org/10.1158/0008-5472.Can-15-1625

    Article  CAS  PubMed  Google Scholar 

  42. Ji A, Qian L, Tian Z, Cui JA-O (2021) WDR5 promotes the proliferation of lung adenocarcinoma by inducing SOX9 expression. Biomark Med 15(17):1599–1609

    Article  CAS  PubMed  Google Scholar 

  43. Chen JC, Hwang JH (2014) Sleep apnea increased incidence of primary central nervous system cancers: a nationwide cohort study. Sleep Med 15(7):749–754. https://doi.org/10.1016/j.sleep.2013.11.782

    Article  PubMed  Google Scholar 

  44. Nieto FJ, Peppard PE, Young T, Finn L, Hla KM, Farre R (2012) Sleep-disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med 186(2):190–194. https://doi.org/10.1164/rccm.201201-0130OC

    Article  PubMed  PubMed Central  Google Scholar 

  45. Peppard PE, Nieto FJ (2013) Here come the sleep apnea-cancer studies. Sleep 36(10):1409–1411. https://doi.org/10.5665/sleep.3018

    Article  PubMed  PubMed Central  Google Scholar 

  46. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594. https://doi.org/10.4065/83.5.584

    Article  PubMed  Google Scholar 

  47. Dong HX, Wang R, Jin XY, Zeng J, Pan J (2018) LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa-mir-22-3p. J Cell Physiol 233(5):4126–4136

    Article  CAS  PubMed  Google Scholar 

  48. Guo X, Liu Y, Kim JL, Kim EY, Kim EQ, Jansen A, Li K, Chan M, Keenan BT, Conejo-Garcia J, Lim DC (2019) Effect of cyclical intermittent hypoxia on Ad5CMVCre induced solitary lung cancer progression and spontaneous metastases in the KrasG12D+; p53fl/fl; myristolated p110fl/fl ROSA-gfp mouse. PLoS ONE 14(2):e0212930. https://doi.org/10.1371/journal.pone.0212930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rashed MH, Bayraktar E, Helal GK, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18(3):538. https://doi.org/10.3390/ijms18030538

    Article  CAS  Google Scholar 

  50. Deng G, Qu J, Zhang Y, Che X, Cheng Y, Fan Y, Zhang S, Na D, Liu Y, Qu X (2017) Gastric cancer-derived exosomes promote peritoneal metastasis by destroying the mesothelial barrier. FEBS Lett 591(14):2167–2179. https://doi.org/10.1002/1873-3468.12722

    Article  CAS  PubMed  Google Scholar 

  51. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B, Camussi G (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356. https://doi.org/10.1158/0008-5472.Can-11-0241

    Article  CAS  PubMed  Google Scholar 

  52. Xu Y, Shen L, Li F, Yang J, Wan X, Ouyang M (2019) microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol 234(11):21380–21394. https://doi.org/10.1002/jcp.28747

    Article  CAS  PubMed  Google Scholar 

  53. Liu X, Sun L, Zhang S, Zhang S, Li WA-O (2020) GINS2 facilitates epithelial-to-mesenchymal transition in non-small-cell lung cancer through modulating PI3K/Akt and MEK/ERK signaling. J Cell Physiol 235(11):7747–7756

    Article  CAS  PubMed  Google Scholar 

  54. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  55. Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. LID. https://doi.org/10.3402/jev.v3.23743[doi].JExtracellVesicles3

  56. Mlcochova J, Faltejskova-Vychytilova P, Ferracin M, Zagatti B, Radova L, Svoboda M, Nemecek R, John S, Kiss I, Vyzula R, Negrini M, Slaby O (2015) MicroRNA expression profiling identifies miR-31-5p/3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. Oncotarget 6(36):38695–38704

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nosho K, Igarashi H, Nojima M, Ito M, Maruyama R, Yoshii S, Naito T, Sukawa Y, Mikami M, Sumioka W, Yamamoto E, Kurokawa S, Adachi Y, Takahashi H, Okuda H, Kusumi T, Hosokawa M, Fujita M, Hasegawa T, Okita K, Hirata K, Suzuki H, Yamamoto H, Shinomura Y (2014) Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway. Carcinogenesis 35(4):776–783

    Article  CAS  PubMed  Google Scholar 

  58. Wang CJ, Stratmann J, Zhou Z-G, Sun X-F (2010) Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer 10:616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang S, Hong Z, Chai Y, Liu Z, Du Y, Li Q, Liu Q (2017) CSN5 promotes renal cell carcinoma metastasis and EMT by inhibiting ZEB1 degradation. Biochem Biophys Res Commun 488(1):101–108

    Article  CAS  PubMed  Google Scholar 

  60. Thomas LR, Foshage AM, Weissmiller AM, Tansey WP (2015) The MYC-WDR5 nexus and cancer. Cancer Res 75(19):4012–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu WA-O, Li J, Li L, Hou T, Cai X, Liu T, Yang X, Wei H, Jiang C, Xiao J (2019) FOXD3 suppresses tumor-initiating features in lung cancer via transcriptional repression of WDR5. Stem Cells 37(5):582–592

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant 82100106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren.

Ethics declarations

Ethical approval

All applicable guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J. Intermittent hypoxia BMSCs-derived exosomal miR-31-5p promotes lung adenocarcinoma development via WDR5-induced epithelial mesenchymal transition . Sleep Breath 27, 1399–1409 (2023). https://doi.org/10.1007/s11325-022-02737-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-022-02737-5

Keywords

Navigation