Skip to main content

Advertisement

Log in

Molecular Imaging of Fibroblast Activation in Rabbit Atherosclerotic Plaques: a Preclinical PET/CT Study

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Aim

Atherosclerosis remains the pathological basis of myocardial infarction and ischemic stroke. Early and accurate identification of plauqes is crucial to improve clinical outcomes of atherosclerosis patients. Our study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-04 PET/CT in identifying plaques via a preclinical rabbit model of atherosclerosis.

Methods

New Zealand white rabbits were fed high-fat diet (HFD), and randomly divided into the model group injured by the balloon, and the sham group only with incisions. Ultrasound was performed to detect plaques, and FAPI-avid was determined through Al18F-NOTA-FAPI-04 PET/CT. Mean standardized uptake values (SUVmean) in lesions were compared, and biodistribution of Al18F-NOTA-FAPI-04 and target-to-background ratios (TBRs) were calculated. Histological staining was performed to display arterial plaques, and autoradiography (ARG) was employed to measure the in vitro intensity of Al18F-NOTA-FAPI-04. At last, the correlation among FAP levels, plaque area, SUVmean values and fibrous cap thickness was assessed.

Results

The rabbit carotid and abdominal atherosclerosis model was established. Al18F-NOTA-FAPI-04 showed a higher uptake in carotid plaques (SUVmean 1.32 ± 0.11) and abdominal plaques (SUVmean 0.73 ± 0.13) compared to corresponding controls (SUVmean 1.07 ± 0.06; 0.46 ± 0.03) (P < 0.05). Biodistribution analysis of Al18F-NOTA-FAPI-04 revealed that the bigger plaques were delineated with higher TBRs. Pathological staining showed the formation of arterial plaques, and ARG staining exhibited a higher intensity of Al18F-NOTA-FAPI-04 in the bigger plaques. Lastly, plaque area was found to be positively correlated to FAP expression and SUVmean, while FAP expression was negatively correlated to fibrous cap thickness of plaques.

Conclusions

We successfully achieve molecular imaging of fibroblast activation in atherosclerotic lesions of rabbits, suggesting Al18F-NOTA-FAPI-04 PET/CT may be a potentially valuable tool to identify plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PET:

Positron emission tomography

FAP:

Fibroblast activation protein

FAPI:

Fibroblast activation protein inhibitor

HFD:

High-fat diet

SUVmean:

Mean standardized uptake value

TBR:

Target-to-background ratio

ARG:

Autoradiography

IVUS:

Intravascular ultrasound

CT:

Computed tomography

FDG:

Fluorodeoxyglucose

NaF:

Sodium fluoride

TSPO:

Translocator protein

MMP:

Matrix metalloproteinase

CUS:

Conventional ultrasound

HPLC:

High performance liquid chromatography

ROI:

Region of interest

VOI:

Volume of interest

HE:

Hematoxylin and eosin

DAB:

3,3'-Diaminobenzidine

IMT:

Intima-media thickness

CXCR4:

C-X-C chemokine receptor 4

FM:

Fibrosing mediastinitis

References

  1. Mohanta SK, Peng L, Li Y et al (2022) Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605:152–159

    Article  CAS  PubMed  Google Scholar 

  2. Stone PH, Libby P, Boden WE (2023) Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management-the plaque hypothesis: a narrative review. JAMA Cardiol 8:192–201

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tufaro V, Serruys PW, Räber L et al (2023) Intravascular imaging assessment of pharmacotherapies targeting atherosclerosis: advantages and limitations in predicting their prognostic implications. Cardiovasc Res 119:121–135

    Article  CAS  PubMed  Google Scholar 

  4. Achenbach S, Fuchs F, Goncalves A et al (2022) Non-invasive imaging as the cornerstone of cardiovascular precision medicine. Eur Heart J Cardiovasc Imaging 23:465–475

    Article  PubMed  Google Scholar 

  5. Derlin T, Werner RA, Weiberg D, Derlin K, Bengel FM (2022) Parametric imaging of biologic activity of atherosclerosis using dynamic whole-body positron emission tomography. JACC Cardiovasc Imaging 15:2098–2108

    Article  PubMed  Google Scholar 

  6. Feil S, Stowbur D, Schörg BF et al (2023) Noninvasive detection of smooth muscle cell-derived hot spots to study atherosclerosis by PET/MRI in mice. Circ Res 132:747–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Velzen SGM, Dobrolinska MM, Knaapen P et al (2023) Automated cardiovascular risk categorization through AI-driven coronary calcium quantification in cardiac PET acquired attenuation correction CT. J Nucl Cardiol 30:955–969

    Article  PubMed  Google Scholar 

  8. Zan C, An J, Wu Z, Li S (2023) Engineering molecular nanoprobes to target early atherosclerosis: precise diagnostic tools and promising therapeutic carriers. Nanotheranostics 7:327–344

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blach A, Kwiecinski J (2023) The role of positron emission tomography in advancing the understanding of the pathogenesis of heart and vascular diseases. Diagnostics (Basel) 13:1791

    Article  CAS  PubMed  Google Scholar 

  10. Bucerius J, Dijkgraaf I, Mottaghy FM, Schurgers LJ (2019) Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. Eur J Nucl Med Mol Imaging 46:251–265

    Article  PubMed  Google Scholar 

  11. Fu Z, Lin Q, Xu Z et al (2022) P2X7 receptor-specific radioligand 18F-FTTM for atherosclerotic plaque PET imaging. Eur J Nucl Med Mol Imaging 49:2595–2604

    Article  CAS  PubMed  Google Scholar 

  12. Maekawa K, Tsuji AB, Yamashita A et al (2021) Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis 337:7–17

    Article  CAS  PubMed  Google Scholar 

  13. Stein S, Weber J, Nusser-Stein S et al (2021) Deletion of fibroblast activation protein provides atheroprotection. Cardiovasc Res 117:1060–1069

    Article  CAS  PubMed  Google Scholar 

  14. Kosmala A, Serfling SE, Michalski K et al (2023) Molecular imaging of arterial fibroblast activation protein: association with calcified plaque burden and cardiovascular risk factors. Eur J Nucl Med Mol Imaging 50:3011–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei Y, Zheng J, Ma L et al (2022) [18F]AlF-NOTA-FAPI-04: FAP-targeting specificity, biodistribution, and PET/CT imaging of various cancers. Eur J Nucl Med Mol Imaging 49:2761–2773

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Zhou X, Xu X et al (2021) Clinical translational evaluation of Al18F-NOTA-FAPI for fibroblast activation protein-targeted tumour imaging. Eur J Nucl Med Mol Imaging 48:4259–4271

    Article  CAS  PubMed  Google Scholar 

  17. Gong JN, Chen BX, Xing HQ, Huo L, Yang YH, Yang MF (2023) Pulmonary artery imaging with 68 Ga-FAPI-04 in patients with chronic thromboembolic pulmonary hypertension. J Nucl Cardiol 30:1166–1172

    Article  PubMed  Google Scholar 

  18. Wu M, Ning J, Li J et al (2022) Feasibility of in vivo imaging of fibroblast activation protein in human arterial walls. J Nucl Med 63:948–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Izquierdo-Garcia D, Diyabalanage H, Ramsay IA et al (2022) Imaging high-risk atherothrombosis using a novel fibrin-binding positron emission tomography probe. Stroke 53:595–604

    Article  CAS  PubMed  Google Scholar 

  20. Huang Z, Cheng XQ, Liu HY et al (2022) Relation of carotid plaque features detected with ultrasonography-based radiomics to clinical symptoms. Transl Stroke Res 13:970–982

    Article  PubMed  Google Scholar 

  21. Zhang J, Lin Z, Zhang X et al (2022) 68Ga-DOTA-DiPSMA PET/CT imaging: biodistribution, dosimetry, and preliminary application in prostate cancer. Front Bioeng Biotechnol 9:811972

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yruela I, Oldfield CJ, Niklas KJ, Dunker AK (2017) Evidence for a strong correlation between transcription factor protein disorder and organismic complexity. Genome Biol Evol 9:1248–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kafouris PP, Koutagiar IP, Georgakopoulos AT, Spyrou GM, Visvikis D, Anagnostopoulos CD (2021) Fluorine-18 fluorodeoxyglucose positron emission tomography-based textural features for prediction of event prone carotid atherosclerotic plaques. J Nucl Cardiol 28:1861–1871

    Article  PubMed  Google Scholar 

  24. Brokopp CE, Schoenauer R, Richards P et al (2011) Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur Heart J 32:2713–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piri R, Lici G, Riyahimanesh P, Gerke O, Alavi A, Høilund-Carlsen PF (2021) Two-year change in 18F-sodium fluoride uptake in major arteries of healthy subjects and angina pectoris patients. Int J Cardiovasc Imaging 37:3115–3126

    Article  PubMed  Google Scholar 

  26. Bacour YAA, van Kanten MP, Smit F et al (2023) Development of a simple standardized scoring system for assessing large vessel vasculitis by 18F-FDG PET-CT and differentiation from atherosclerosis. Eur J Nucl Med Mol Imaging 50:2647–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patel NH, Osborne MT, Teague H et al (2021) Heightened splenic and bone marrow uptake of 18F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: an observational study. Atherosclerosis 339:20–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitagawa T, Nakano Y (2022) Innovative atherosclerosis imaging using 18F-NaF PET/CT: Its clinical potential. J Nucl Cardiol 29:1724–1728

    Article  PubMed  Google Scholar 

  29. Oliveira-Santos M, Castelo-Branco M, Silva R et al (2017) Atherosclerotic plaque metabolism in high cardiovascular risk subjects - a subclinical atherosclerosis imaging study with 18F-NaF PET-CT. Atherosclerosis 260:41–46

    Article  PubMed  Google Scholar 

  30. Kircher M, Tran-Gia J, Kemmer L et al (2020) Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: correlation with 18F-FDG PET/CT. J Nucl Med 61:751–756

    Article  CAS  PubMed  Google Scholar 

  31. Weiberg D, Thackeray JT, Daum G et al (2018) Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J Nucl Med 59:266–272

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Heber D, Leike T et al (2018) [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging 45:558–566

    Article  CAS  PubMed  Google Scholar 

  33. Qi N, Wang H, Wang H et al (2022) Non-tumoral uptake of 68Ga-FAPI-04 PET: a retrospective study. Front Oncol 12:989595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Francque SM, van der Graaff D, Kwanten WJ (2016) Non-alcoholic fatty liver disease and cardiovascular risk: pathophysiological mechanisms and implications. J Hepatol 65:425–443

    Article  CAS  PubMed  Google Scholar 

  35. Emrich T, Schattenberg JM (2021) Letter: coronary atherosclerosis in patients with significant hepatic fibrosis in non-alcoholic fatty liver disease-the role for non-invasive testing. Aliment Pharmacol Ther 54:214–215

    Article  PubMed  Google Scholar 

  36. Park JG, Jung J, Verma KK et al (2021) Liver stiffness by magnetic resonance elastography is associated with increased risk of cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 53:1030–1037

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taylor E, Huang N, Bodde J et al (2018) MRI of atherosclerosis and fatty liver disease in cholesterol fed rabbits. J Transl Med 16:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Monslow J, Todd L, Chojnowski JE, Govindaraju PK, Assoian RK, Puré E (2020) Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. Am J Pathol 190:1118–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song L, Zan C, Liang Z et al (2023) Potential value of FAPI PET/CT in the detection and treatment of fibrosing mediastinitis: preclinical and pilot clinical investigation. Mol Pharm 20:4307–4318

  40. Tatar G, Beyhan E, Erol Fenercioğlu Ö, Sevindir İ, Ergül N, Çermik TF (2023) 68Ga-FAPI-04 PET/CT findings in patients with liver cirrhosis. Mol Imaging Radionucl Ther 32:146–149

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Wu J, Liu L, Peng D, Chen Y (2022) 68Ga-FAPI-04 PET/ct imaging for fibrous dysplasia of the bone. Clin Nucl Med 47:e9–e10

    Article  PubMed  Google Scholar 

  42. Zhang A, Zhang H, Zhou X, Li Z, Li N (2021) Solitary fibrous tumors of the pleura shown on 18F-FDG and 68Ga-DOTA-FAPI-04 PET/CT. Clin Nucl Med 46:e534–e537

    Article  PubMed  Google Scholar 

  43. Yang T, Zhu R, Guo Z, Niu X, Tao W (2023) Solitary fibrous tumor of the prostate shown on FAPI PET/CT. Clin Nucl Med 48:530–531

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Cai J, Wu Z, Yao S, Miao W (2021) Intense [68Ga]Ga-FAPI-04 uptake in solitary fibrous tumor/hemangiopericytoma of the central nervous system. Eur J Nucl Med Mol Imaging 48:4103–4104

    Article  PubMed  Google Scholar 

  45. Watabe T, Naka S, Tatsumi M et al (2023) Initial evaluation of [18F]FAPI-74 PET for various histopathologically confirmed cancers and benign lesions. J Nucl Med 64:1225–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verena A, Zhang Z, Kuo HT et al (2023) Synthesis and Preclinical evaluation of three novel 68Ga-labeled bispecific PSMA/FAP-targeting tracers for prostate cancer imaging. Molecules 28:1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chandekar KR, Prashanth A, Vinjamuri S, Kumar R (2023) FAPI PET/ct imaging-an updated review. Diagnostics (Basel) 13:2018

    Article  CAS  PubMed  Google Scholar 

  48. Huang J, Fu L, Hu K et al (2022) Automatic Production and Preliminary PET Imaging of a New Imaging Agent [18F]AlF-FAPT. Front Oncol 11:802676

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huang J, Fu L, Zhang X et al (2023) Noninvasive imaging of FAP expression using positron emission tomography: a comparative evaluation of a [18F]-labeled glycopeptide-containing FAPI with [18F]FAPI-42. Eur J Nucl Med Mol Imaging 50:3363–3374

  50. Jansen K, Heirbaut L, Cheng JD et al (2013) Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. ACS Med Chem Lett 4:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jansen K, Heirbaut L, Verkerk R et al (2014) Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem 57:3053–3074

    Article  CAS  PubMed  Google Scholar 

  52. Millul J, Bassi G, Mock J et al (2021) An ultra-high-affinity small organic ligand of fibroblast activation protein for tumor-targeting applications. Proc Natl Acad Sci U S A 18:e2101852118

    Article  Google Scholar 

  53. Backhaus P, Gierse F, Burg MC et al (2022) Translational imaging of the fibroblast activation protein (FAP) using the new ligand [68Ga]Ga-OncoFAP-DOTAGA. Eur J Nucl Med Mol Imaging 49:1822–1832

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (Grant No. U22A6008, 81971655), the projects for Local Science and Technology Development Guided by the Central Committee of Shanxi Province (Grant No. YDZJSX2021B013), CAMS Innovation Fund for Medical Sciences (Grant No. 2021-I2M-1–008), and Natural Science Foundation for Young Scientists of Shanxi Province (Grant No. 202303021212139).

Author information

Authors and Affiliations

Authors

Contributions

T.J., C.Z., L.L., J.C., Y.S., H.W., Z.W., M.Y. K.D. and S.L.: contributed to conceptualization and design of the study. T.J., C.Z. and Y.S.: performed main experiments. T.J. and C.Z.: performed the statistical analysis, and wrote the manuscript. L.L., J.C., Y.S., H.W., Z.W. M.Y. K.D., and S.L.: revised the manuscript and gave constructive suggestions. Z.W., M.Y. K.D. and S.L.: provided the funding. All authors contributed to manuscript revision, read, and approved the submitted version.

Corresponding authors

Correspondence to Zhifang Wu, Min-Fu Yang, Kefei Dou or Sijin Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, T., Zan, C., Li, L. et al. Molecular Imaging of Fibroblast Activation in Rabbit Atherosclerotic Plaques: a Preclinical PET/CT Study. Mol Imaging Biol (2024). https://doi.org/10.1007/s11307-024-01919-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11307-024-01919-9

Keywords

Navigation