Skip to main content
Log in

Quantification of extravasation and binding of PSMA-targeted nanobubbles by modelling the second-wave phenomenon

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

With about ten-fold smaller diameter than MBs, nanobubbles (NBs) were developed as new-generation ultrasound contrast agents (UCA) able to extravasate and target specific receptors expressed on extravascular cancer cells, such as the prostate-specific membrane antigen (PSMA). It has been shown that PSMA-targeted NBs (PSMA-NBs) can bind to specific prostate cancer (PCa) cells and exhibit a prolonged retention effect (PRE), observable by NB-based CEUS (NB-CEUS). However, previous analyses of PRE were mainly limited to the semi-quantitative assessment of the time-intensity curve (TIC) in an entire tumor ROI, possibly losing information on tumor spatial heterogeneity and local characteristics. When analyzing the pixel-level TICs of free NB-based CEUS, we observed a unique second-wave phenomenon: The first pass of the NB wave (bolus) is usually accompanied by a second wave in the time range of 3 to 15 min after the bolus injection. Such a phenomenon was shown to be potentially valuable in supporting the diagnostics of cancerous lesions.

Procedures

Seven male athymic nude mice were included and implanted with a tumor expressing PSMA (PSMA+) and tumors not expressing PSMA (PSMA-) on two flanks. Using either free NBs or PSMA-NBs, the characteristics of pixel-level TICs were estimated by a specialized model accounting for the two-wave phenomenon, compared with a conventional model describing only one wave. The estimated parameters by the two models were presented as parametric maps to visualize the PRE of PSMA-NBs in a dual-tumor mouse model. The effectiveness of the two models were also assessed by comparing the estimated parameters in the PSMA+ and PSMA- tumors through Mann-Whitney U test and quartile difference.

Results

Two parameters, the peak time and residual factor of the second wave, by the second-wave model were significantly different between PSMA+ and PSMA- tumors when using PSMA-NBs. Compared with the TICs of free NBs, TICs of PSMA-NBs present higher peak intensity and a more delayed second wave, especially in the PSMA+ tumor.

Conclusions

The estimation of parametric maps allows the estimation and visualization of specific binding of PSMA-NBs in PCa. The incorporation of the second-wave phenomenon enrich our understanding of NB kinetics in vivo and can possibly contribute to improved diagnostics of PCa in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data can be shared by contacting the corresponding author.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer J Clin 71:209–249

    Google Scholar 

  2. Culp MB, Soerjomataram I, Efstathiou JA et al (2020) Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol 77:38–52

    Article  PubMed  Google Scholar 

  3. Mottet N, van den Bergh RC, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, Fanti S, Fossati N, Gandaglia G, Gillessen S (2021) EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 79:243–262

    Article  CAS  PubMed  Google Scholar 

  4. Ilic D, Djulbegovic M, Jung JH et al (2018) Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 362:k3519

  5. Naji L, Randhawa H, Sohani Z et al (2018) Digital rectal examination for prostate cancer screening in primary care: a systematic review and meta-analysis The. Ann Fam Med 16:149–154

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eichler K, Hempel S, Wilby J et al (2006) Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 175:1605–1612

    Article  PubMed  Google Scholar 

  7. Drost F-JH, Osses D, Nieboer D et al (2020) Prostate magnetic resonance imaging, with or without magnetic resonance imaging-targeted biopsy, and systematic biopsy for detecting prostate cancer: a Cochrane systematic review and meta-analysis. Eur Urol 77:78–94

    Article  PubMed  Google Scholar 

  8. Kasivisvanathan V, Rannikko AS, Borghi M et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378:1767–1777

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harvey C, Pilcher J, Richenberg J et al (2012) Applications of transrectal ultrasound in prostate cancer. Br J Radiol 85:S3–S17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Piscaglia F, Nolsøe C, Dietrich CA et al (2012) The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications Ultraschall in der Medizin-European. J Ultrasound 33:33–59

    CAS  Google Scholar 

  11. Russo G, Mischi M, Scheepens W et al (2012) Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int 110:E794–E808

    Article  PubMed  Google Scholar 

  12. Kuenen MP, Mischi M, Wijkstra H et al (2011) Contrast-ultrasound diffusion imaging for localization of prostate cancer. IEEE Trans Med Imaging 30:1493–1502

    Article  PubMed  Google Scholar 

  13. Turco S, Peter F, Rogier W et al (2020) Contrast-enhanced ultrasound quantification: from kinetic modeling to machine learning. Ultrasound Med Biol 46:518–543

    Article  PubMed  Google Scholar 

  14. Smeenge M, Tranquart F, Mannaerts CK et al (2017) First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest Radiol 52:419–427

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Abenojar EC, Perera R et al (2019) Time-intensity-curve analysis and tumor extravasation of nanobubble ultrasound contrast agents. Ultrasound Med Biol 45:2502–2514

    Article  PubMed  PubMed Central  Google Scholar 

  16. Claesson-Welsh L (2015) Vascular permeability—the essentials. Upsala J Med Sci 120:135–143

    Article  PubMed  PubMed Central  Google Scholar 

  17. Perera R, Hernandez C, Cooley M et al (2019) Contrast enhanced ultrasound imaging by nature-inspired ultrastable echogenic nanobubbles. Nanoscale 11:15647–15658

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu H, Rognin NG, Krupka TM et al (2013) Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med Biol 39:2137–2146

    Article  PubMed  PubMed Central  Google Scholar 

  19. Woythal N, Arsenic R, Kempkensteffen C et al (2018) Immunohistochemical validation of PSMA expression measured by 68Ga-PSMA PET/CT in primary prostate cancer. J Nuclear Med 59:238–243

    Article  CAS  Google Scholar 

  20. Osborne JR, Akhtar NH, Vallabhajosula S et al (2013) Urol Oncol: Semin Orig Invest 31:144–154

    Article  CAS  Google Scholar 

  21. Perera RH, Wang X, Wang Y et al (2020) Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles. Nanomed: Nanotechnol Biol Med 28:102213

    Article  CAS  Google Scholar 

  22. Wang Y, De Leon AC, Perera R et al (2021) Molecular imaging of orthotopic prostate cancer with nanobubble ultrasound contrast agents targeted to PSMA. Sci Rep 11:1–12

    Google Scholar 

  23. Yin T, Wang P, Zheng R et al (2012) Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomed 7:895

    CAS  Google Scholar 

  24. Chen C, Perera R, Kolios MC et al (2022) The unique second wave phenomenon in contrast enhanced ultrasound imaging with nanobubbles. Sci Rep 12:1–12

    Google Scholar 

  25. Dietrich CF, Averkiou M, Nielsen MB et al (2018) How to perform contrast-enhanced ultrasound (CEUS). Ultrasound Int Open 4:E2–E15

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khalifa F, Soliman A, El-Baz A et al (2014) Models and methods for analyzing DCE-MRI: A review. Med Phys 41:124301

    Article  PubMed  Google Scholar 

  27. Cuenod C, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Int imaging 94:1187–1204

    Article  CAS  Google Scholar 

  28. Chen C, Perera R, Kolios MC et al (2022) Pharmacokinetic modeling of the second-wave phenomenon in nanobubble-based contrast-enhanced ultrasound. IEEE Trans Biomed Eng 70:42–54

    Article  PubMed  Google Scholar 

  29. Perera R, Wang X, Ramamurtri G et al (2018) Nanobubble extravasation in prostate tumors imaged with ultrasound: role of active versus passive targeting. Ieee International Ultrasonics Symposium (Ius),2018, vol. Series): IEEE), pp 1–4

    Google Scholar 

  30. Perera RH, Abenojar E, Nittayacharn P et al (2022) Intracellular vesicle entrapment of nanobubble ultrasound contrast agents targeted to PSMA promotes prolonged enhancement and stability in vivo and in vitro. Nanotheranostics 6:270

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen C, Perera R, Kolios MC et al (2022) Pharmacokinetic modeling of PSMA targeted nanobubbles for quantification of extravasation and binding in mice models of prostate cancer. Med Phys 49:6547–6559

    Article  CAS  PubMed  Google Scholar 

  32. Turco S, Wijkstra H, Mischi M (2016) Mathematical models of contrast transport kinetics for cancer diagnostic imaging: a review. IEEE Rev Biomed Eng 9:121–147

    Article  PubMed  Google Scholar 

  33. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magnet Reson Imaging 7:91–101

    Article  CAS  Google Scholar 

  34. Lammertsma A, Bench C, Hume S et al (1996) Comparison of methods for analysis of clinical [11C] raclopride studies. J Cereb Blood Flow Metab 16:42–52

    Article  CAS  PubMed  Google Scholar 

  35. Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McKnight PE, Najab J (2010) Mann‐Whitney U test. In: Weiner IB, Craighead WE (eds) The Corsini Encyclopedia of Psychology. https://doi.org/10.1002/9780470479216.CORPSY0524

  37. Sullivan GM, Feinn R (2012) Using effect size—or why the P value is not enough. J Graduate Med Educ 4:279–282

    Article  Google Scholar 

  38. Voorrips LE, Ravelli AC, Dongelmans PC, Deurenberg P, Van Staveren WA (1991) A physical activity questionnaire for the elderly. Med Sci Sports Exerc 23(8):974–979

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Institutes of Health (R01EB028144), 1S10OD021635-01, the CWRU Coulter Translational Research Partnership, and the 4TU. Precision Medicine grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Perera, R., Mischi, M. et al. Quantification of extravasation and binding of PSMA-targeted nanobubbles by modelling the second-wave phenomenon. Mol Imaging Biol 26, 253–263 (2024). https://doi.org/10.1007/s11307-023-01891-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-023-01891-w

Keywords

Navigation