Skip to main content

Advertisement

Log in

Preclinical evaluation of bozepinib in bladder cancer cell lines: modulation of the NPP1 enzyme

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Bladder cancer (BC) is the most common cancer of the urinary tract. Bozepinib (BZP), a purine-derived molecule, is a potential compound for the treatment of cancer. Purinergic signaling consists of the activity of nucleosides and nucleotides present in the extracellular environment, modulating a variety of biological actions. In cancer, this signaling is mainly controlled by the enzymatic cascade involving the NTPDase/E-NPP family and ecto-5’-nucleotidase/CD73, which hydrolyze extracellular adenosine triphosphate (ATP) to adenosine (ADO). The aim of this work is to evaluate the activity of BZP in the purinergic system in BC cell lines and to compare its in vitro antitumor activity with cisplatin, a chemotherapeutic drug widely used in the treatment of BC. In this study, two different BC cell lines, grade 1 RT4 and the more aggressive grade 3 T24, were used along with a human fibroblast cell line MRC-5, a cell used to predict the selectivity index (SI). BZP shows strong antitumor activity, with notable IC50 values (8.7 ± 0.9 µM for RT4; 6.7 ± 0.7 µM for T24), far from the SI for cisplatin (SI for BZP: 19.7 and 25.7 for RT4 and T24, respectively; SI for cisplatin: 1.7 for T24). BZP arrests T24 cells in the G2/M phase of the cell cycle, inducing early apoptosis. Moreover, BZP increases ATP and ADP hydrolysis and gene/protein expression of the NPP1 enzyme in the T24 cell line. In conclusion, BZP shows superior activity compared to cisplatin against BC cell lines in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data are available upon reasonable request.

References

  1. Saginala K, Barsouk A, Aluru JS et al (2020) Epidemiology of Bladder Cancer. Med Sci (Basel) 8. https://doi.org/10.3390/medsci8010015

  2. Kogevinas M, Mannetje ’T, Cordier A S, et al (2003) Occupation and Bladder cancer among men in Western Europe. Cancer Causes Control 14:907–914. https://doi.org/10.1023/B:CACO.0000007962.19066.9c

    Article  PubMed  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  4. Mushtaq J, Thurairaja R, Nair R (2019) Bladder cancer. Surg (United Kingdom) 37:529–537. https://doi.org/10.1016/j.mpsur.2019.07.003

    Article  Google Scholar 

  5. Bellmunt J, Orsola A, Leow JJ et al (2014) Bladder cancer: ESMO practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:iii40–iii48. https://doi.org/10.1093/annonc/mdu223

    Article  PubMed  Google Scholar 

  6. DeGeorge KC, Holt HR, Hodges SC (2017) Bladder Cancer: diagnosis and treatment. Am Fam Physician 96:507–514

    PubMed  Google Scholar 

  7. Lotan Y, Kamat AM, Porter MP et al (2009) Key concerns about the current state of Bladder cancer: a position paper from the Bladder Cancer think Tank, the Bladder Cancer Advocacy Network, and the Society of Urologic Oncology. Cancer 115:4096–4103. https://doi.org/10.1002/cncr.24463

    Article  PubMed  Google Scholar 

  8. Chang SS, Bochner BH, Chou R et al (2017) Treatment of non-metastatic muscle-invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J Urol 198:552–559. https://doi.org/10.1016/j.juro.2017.04.086

    Article  PubMed Central  PubMed  Google Scholar 

  9. Martinez Rodriguez RH, Buisan Rueda O, Ibarz L (2017) Bladder cancer: Present and future. Med Clin (Barc) 149:449–455. https://doi.org/10.1016/j.medcli.2017.06.009

    Article  PubMed  Google Scholar 

  10. Dias A, de Scholl F, Moritz JN CEJ, et al (2021) New insights into cytotoxic mechanisms of bozepinib against glioblastoma. Eur J Pharm Sci 162. https://doi.org/10.1016/j.ejps.2021.105823

  11. Ramírez A, Boulaiz H, Morata-Tarifa C et al (2014) HER2-signaling pathway, JNK and ERKs kinases, and cancer stem-like cells are targets of Bozepinib small compound. Oncotarget 5:3590–3606. https://doi.org/10.18632/oncotarget.1962

    Article  PubMed Central  PubMed  Google Scholar 

  12. Marchal JA, Carrasco E, Ramirez A et al (2013) Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence. Drug Des Devel Ther 7:1301–1313. https://doi.org/10.2147/DDDT.S51354

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kim SH, Choi JY (2022) Purinergic signaling in the peripheral vestibular system. Purinergic Signal 18:165–176. https://doi.org/10.1007/s11302-022-09855-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5’-nucleotidase (CD73). Purinergic Signal 2:351–360. https://doi.org/10.1007/s11302-005-5302-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Reyna-Jeldes M, Díaz-Muñoz M, Madariaga JA et al (2021) Autocrine and paracrine purinergic signaling in the most lethal types of cancer. Purinergic Signal 17:345–370. https://doi.org/10.1007/s11302-021-09785-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Campos-Contreras ADR, Díaz-Muñoz M, Vázquez-Cuevas FG (2020) Purinergic Signaling in the hallmarks of Cancer. Cells 9:1–24. https://doi.org/10.3390/cells9071612

    Article  CAS  Google Scholar 

  18. Burnstock G, Di Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal 9:491–540. https://doi.org/10.1007/s11302-013-9372-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Stella J, Bavaresco L, Braganhol E et al (2010) Differential ectonucleotidase expression in human Bladder cancer cell lines. Urologic Oncology: Seminars and Original Investigations 28:260–267. https://doi.org/10.1016/j.urolonc.2009.01.035

    Article  CAS  PubMed  Google Scholar 

  20. Rockenbach L, Braganhol E, Dietrich F et al (2014) NTPDase3 and ecto-5’-nucleotidase/CD73 are differentially expressed during mouse Bladder cancer progression. Purinergic Signal 10:421–430. https://doi.org/10.1007/s11302-014-9405-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nunez M, Diaz-Gavilan M, Conejo-Garcia A et al (2008) Design, synthesis and anticancer activity against the MCF-7 cell line of Benzo-fused 1,4-Dihetero seven- and six-Membered Tethered pyrimidines and purines. Curr Med Chem 15:2614–2631. https://doi.org/10.2174/092986708785909021

    Article  CAS  PubMed  Google Scholar 

  22. Figueiró F, Bernardi A, Frozza RL et al (2013) Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J Biomed Nanotechnol 9:516–526. https://doi.org/10.1166/jbn.2013.1547

    Article  CAS  PubMed  Google Scholar 

  23. Chan K-M, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380. https://doi.org/10.1016/0003-2697(86)90640-8

    Article  CAS  PubMed  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  26. Xu J, Gewirtz DA (2022) Is autophagy always a barrier to Cisplatin. Therapy? Biomolecules 12:1–22. https://doi.org/10.3390/biom12030463

    Article  CAS  Google Scholar 

  27. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48:434–452. https://doi.org/10.1016/j.immuni.2018.03.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Narayan VM (2021) Radiotherapy with or without chemotherapy in muscle-invasive Bladder Cancer. 50 studies every urologist should know. 147–152. https://doi.org/10.1093/med/9780190655341.003.0026

  29. Torgovnick A, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front Genet 6:1–15. https://doi.org/10.3389/fgene.2015.00157

    Article  CAS  Google Scholar 

  30. Choi W, Porten S, Kim S et al (2014) Identification of distinct basal and luminal subtypes of muscle-invasive Bladder Cancer with different sensitivities to Frontline Chemotherapy. Cancer Cell 25:152–165. https://doi.org/10.1016/j.ccr.2014.01.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jiang DM, Gupta S, Kitchlu A et al (2021) Defining cisplatin eligibility in patients with muscle-invasive Bladder cancer. Nat Rev Urol 18:104–114. https://doi.org/10.1038/s41585-020-00404-6

    Article  PubMed  Google Scholar 

  32. Muller PY, Milton MN (2012) The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov 11:751–761. https://doi.org/10.1038/nrd3801

    Article  CAS  PubMed  Google Scholar 

  33. Awang N, Aziz ZA, Kamaludin NF, Chan KM (2014) Cytotoxicity and mode of cell death induced by triphenyltin (IV) compounds in vitro. Online J Biol Sci 14:84–93. https://doi.org/10.3844/ojbsci.2014.84.93

    Article  CAS  Google Scholar 

  34. Badisa RB, Darling-Reed SF, Joseph P et al (2009) Selective cytotoxic activities of two novel synthetic Drugs on human breast carcinoma MCF-7 cells. Anticancer Res 29:2993–2996

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Quispe MA, Zavala CD, Rojas CJ et al (2006) Efecto citotóxico selectivo in vitro de muricin H (acetogenina de Annona muricata) en cultivos celulares de cáncer de pulmón. Rev Peru Med Exp Salud Publica 23:265–269

    Google Scholar 

  36. “Pedro Kourí.” Instituto de Medicina Tropical, del Barrio Alonso S, Gutiérrez Gaitén G (1966) Y, Morier Díaz L Revista cubana de medicina tropical. Editorial Ciencias Médicas

  37. Powles T, Perry J, Shamash J et al (2007) A comparison of the platinum analogues in Bladder cancer cell lines. Urol Int 79:67–72. https://doi.org/10.1159/000102917

    Article  CAS  PubMed  Google Scholar 

  38. Rahman NA, Yazan LS, Wibowo A et al (2016) Induction of apoptosis and G2/M arrest by ampelopsin E from Dryobalanops towards triple negative Breast cancer cells, MDA-MB-231. BMC Complement Altern Med 16:1–9. https://doi.org/10.1186/s12906-016-1328-1

    Article  CAS  Google Scholar 

  39. Li B, Zhou P, Xu K et al (2020) Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int J Biol Sci 16:74–84. https://doi.org/10.7150/ijbs.33787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bhosale PB, Abusaliya A, Kim HH et al (2022) Apigetrin promotes TNFα-Induced apoptosis, Necroptosis, G2/M phase cell cycle arrest, and ROS Generation through Inhibition of NF-κB pathway in Hep3B Liver Cancer cells. https://doi.org/10.3390/cells11172734. Cells 11:

  41. Qu K, Lin T, Wei J et al (2013) Cisplatin induces cell cycle arrest and senescence via upregulating P53 and P21 expression in HepG2 cells. Nan Fang Yi Ke Da Xue Xue Bao 33:1253–1259

    CAS  PubMed  Google Scholar 

  42. Wang S, Li W, Xue Z et al (2013) Molecular imaging of p53 signal pathway in Lung cancer cell cycle arrest induced by cisplatin. Mol Carcinog 52:900–907. https://doi.org/10.1002/mc.21930

    Article  CAS  PubMed  Google Scholar 

  43. Magnano S, Hannon Barroeta P, Duffy R et al (2021) Cisplatin induces autophagy-associated apoptosis in human oral squamous cell carcinoma (OSCC) mediated in part through reactive oxygen species. Toxicol Appl Pharmacol 427:115646. https://doi.org/10.1016/j.taap.2021.115646

    Article  CAS  PubMed  Google Scholar 

  44. Li QQ, Lee RX, Liang H et al (2013) Enhancement of cisplatin-induced apoptosis by β-elemene in resistant human Ovarian cancer cells. Med Oncol 30. https://doi.org/10.1007/s12032-012-0424-4

  45. Park H-J, Kim J-S, Lee R, Song H (2022) Cisplatin induces apoptosis in mouse neonatal testes Organ Culture. Int J Mol Sci 23:13360. https://doi.org/10.3390/ijms232113360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Xu X, Lai Y, Hua Z-C (2019) Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci Rep 39. https://doi.org/10.1042/BSR20180992

  47. Li YJ, Lei YH, Yao N et al (2017) Autophagy and multidrug resistance in cancer. Chin J Cancer 36:52. https://doi.org/10.1186/s40880-017-0219-2

    Article  PubMed Central  PubMed  Google Scholar 

  48. Buchser WJ, Laskow TC, Pavlik PJ et al (2012) Cell-mediated autophagy promotes cancer cell survival. Cancer Res 72:2970–2979. https://doi.org/10.1158/0008-5472.CAN-11-3396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913–1930. https://doi.org/10.1101/gad.287524.116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Panda PK, Mukhopadhyay S, Das DN et al (2015) Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Semin Cell Dev Biol 39:43–55. https://doi.org/10.1016/j.semcdb.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  51. González-Polo RA, Boya P, Pauleau AL et al (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118:3091–3102. https://doi.org/10.1242/jcs.02447

    Article  CAS  PubMed  Google Scholar 

  52. Trybus W, Król T, Trybus E, Stachurska A (2021) Physcion induces potential Anticancer effects in Cervical Cancer cells. https://doi.org/10.3390/cells10082029. Cells 10:

  53. Shen X, Zhao B (2018) Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis. BMJ (Online) 362:1–9. https://doi.org/10.1136/bmj.k3529

    Article  Google Scholar 

  54. Wu Y, Chen W, Xu ZP, Gu W (2019) PD-L1 distribution and perspective for cancer immunotherapy— blockade, knockdown, or inhibition. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.02022

  55. de Jong FC, Rutten VC, Zuiverloon TCM, Theodorescu D (2021) Improving anti-pd-1/pd-l1 therapy for localized Bladder cancer. Int J Mol Sci 22:1–15. https://doi.org/10.3390/ijms22062800

    Article  CAS  Google Scholar 

  56. Soleimani A, Dadjoo P, Avan A et al (2022) Emerging roles of CD133 in the treatment of gastric cancer, a novel stem cell biomarker and beyond. Life Sci 293:120050. https://doi.org/10.1016/j.lfs.2021.120050

    Article  CAS  PubMed  Google Scholar 

  57. Ren F, Sheng WQ, Du X (2013) CD133: a cancer stem cells marker, is used in colorectal cancers. World J Gastroenterol 19:2603–2611. https://doi.org/10.3748/wjg.v19.i17.2603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhang JL, Liu Y, Yang H et al (2017) ATP-P2Y2-β-catenin axis promotes cell invasion in Breast cancer cells. Cancer Sci 108:1318–1327. https://doi.org/10.1111/cas.13273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Xia J, Yu X, Tang L et al (2015) P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 34:103–110. https://doi.org/10.3892/or.2015.3979

    Article  CAS  PubMed  Google Scholar 

  60. Takai E, Tsukimoto M, Harada H, Kojima S (2014) Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells. Purinergic Signal 10:487–497. https://doi.org/10.1007/s11302-014-9411-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Schulien I, Hockenjos B, Van Marck V et al (2020) Extracellular ATP and purinergic P2Y2 receptor signaling promote liver tumorigenesis in mice by exacerbating DNA damage. Cancer Res 80:699–708. https://doi.org/10.1158/0008-5472.CAN-19-1909

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/PQ n°302879/2017-0, Battastini AM and CNPq n°406035/2021-0, CNPq/PQ n° 311580/2021-1, Figueiró F). J.S. received support from the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2023-05498).

Author information

Authors and Affiliations

Authors

Contributions

Álisson C. da Silva: Methodology, investigation, writing-original draft preparation. Juliete N. Scholl, Amanda F. Dias and Augusto F. Weber: Investigation, data curation. Fernanda B. Morrone, Olga Cruz-López, Ana Conejo-García, and Jean Sévigny: Investigation. Joaquín María Campos: Investigation and writing-reviewing. Fabrício Figueiró and Ana M. O. Battastini: Supervision, writing-reviewing and editing, funding acquisition.

Corresponding author

Correspondence to Ana Maria Oliveira Battastini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, Á.C., Scholl, J.N., de Fraga Dias, A. et al. Preclinical evaluation of bozepinib in bladder cancer cell lines: modulation of the NPP1 enzyme . Purinergic Signalling (2023). https://doi.org/10.1007/s11302-023-09975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-023-09975-6

Keywords

Navigation