Skip to main content
Log in

Comparative metabolomic and transcriptomic analysis of Saccharomyces cerevisiae W303a and CEN.PK2-1C

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae is a health microorganism closely related to human life, especially in food and pharmaceutical industries. S. cerevisiae W303a and CEN.PK2-1C are two commonly used strains for synthetic biology-based natural product production. Yet, the metabolomic and transcriptomic differences between these two strains have not been compared. In this study, metabolomics and transcriptomics were applied to analyze the differential metabolites and differential expression genes (DEGs) between W303a and CEN.PK2-1C cultured in YPD and SD media. The growth rate of W303a in YPD medium was the lowest compared with other groups. When cultured in YPD medium, CEN.PK2-1C produced more phenylalanine than W303a; when cultured in SD medium, W303a produced more phospholipids than CEN.PK2-1C. Transcriptomic analysis revealed that 19 out of 22 genes in glycolysis pathway were expressed at higher levels in CEN.PK2-1C than that in W303a no matter which media were used, and three key genes related to phenylalanine biosynthesis including ARO9, ARO7 and PHA2 were up-regulated in CEN.PK2-1C compared with W303a when cultured in YPD medium, whereas seven DEGs associated with phospholipid biosynthesis were up-regulated in W303a compared with CEN.PK2-1C when cultured in SD medium. The high phenylalanine produced by CEN.PK2-1C and high phospholipids produced by W303a indicated that CEN.PK2-1C may be more suitable for synthesis of natural products with phenylalanine as precursor, whereas W303a may be more appropriate for synthesis of phospholipid metabolites. This finding provides primary information for strain selection between W303a and CEN.PK2-1C for synthetic biology-based natural product production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analyzed within this study are available from the corresponding author upon reasonable request.

References

  • Adams ZP, Ehlting J, Edwards R (2019) The regulatory role of shikimate in plant phenylalanine metabolism. J Theor Biol 462:158–170

    Article  CAS  PubMed  Google Scholar 

  • Ajikumar PK, Xiao WH, Tyo KEJ et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babaei M, Borja Zamfir GM, Chen X et al (2020) Metabolic engineering of Saccharomyces cerevisiae for rosmarinic acid production. ACS Synth Biol 9:1978–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu D, Luo H, Huo P et al (2021) KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 49:W317–W325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xiao W, Wang Y et al (2016) Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact 15:1–13

    Article  Google Scholar 

  • Chen C, Chen H, Zhang Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Daum G, Tuller G, Nemec T et al (1999) Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast 15:601–614

    Article  CAS  PubMed  Google Scholar 

  • Entian KD, Kötter P (1998) Yeast mutant and plasmid collections. Methods Microbiol 26:431–449

    Article  CAS  Google Scholar 

  • Entian KD, Kötter P (2007) 25 yeast genetic strain and plasmid collections. Methods Microbiol 36:629–666

    Article  CAS  Google Scholar 

  • Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1:66–71

    Article  CAS  PubMed  Google Scholar 

  • Foy JJ, Bhattacharjee JK (1977) Gluconeogenesis in Saccharomyces cerevisiae: determination of fructose 1,6 biphosphatase activity in cells grown in the presence of glycolytic carbon sources. J Bacteriol 129:978–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:546–567

    Article  CAS  PubMed  Google Scholar 

  • Han B-K, Emr SD (2013) The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis. J Biol Chem 288:20633–20645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Tao Liu SL (2019) Progress in the synthesis of aromatic compounds and their derivatives by microorganisms based on shikimic acid pathway. Life Sci 31:430–448

    Google Scholar 

  • Kucharczyk R, Gromadka R, Migdalski A et al (1999) Disruption of six novel yeast genes located on chromosome II reveals one gene essential for vegetative growth and two required for sporulation and conferring hypersensitivity to various chemicals. Yeast 15:987–1000

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2014) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  Google Scholar 

  • Liti G, Carter DM, Moses AM et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Gou Y, Zhang B et al (2022) Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnol Bioeng 119:1314–1326

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Zhang C, Zhao F et al (2018) Biosynthesis of ursolic acid and oleanolic acid in Saccharomyces cerevisiae. AIChE J 64:3794–3802

    Article  CAS  Google Scholar 

  • Lyu X, Zhao G, Ng KR et al (2019) Metabolic engineering of Saccharomyces cerevisiae for de novo production of kaempferol. J Agric Food Chem 67:5596–5606

    Article  CAS  PubMed  Google Scholar 

  • Ming M, Wang X, Lian L et al (2019) Metabolic responses of: Saccharomyces cerevisiae to ethanol stress using gas chromatography–mass spectrometry. Mol Omi 15:216–221

    Article  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB et al (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  CAS  PubMed  Google Scholar 

  • Paramasivan K, Rajagopal K, Mutturi S (2019) Studies on squalene biosynthesis and the standardization of its extraction methodology from Saccharomyces cerevisiae. Appl Biochem Biotechnol 187:691–707

    Article  CAS  PubMed  Google Scholar 

  • Parapouli M, Vasileiadi A, Afendra A-S et al (2020) Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 6:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SH, Kim S, Hahn JS (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 98:9139–9147

    Article  CAS  PubMed  Google Scholar 

  • Rogowska-Wrzesinska A, Larsen PM, Blomberg A et al (2001) Comparison of the proteomes of three yeast wild type strains: CEN.PK2, FY1679 and W303. Comp Funct Genomics 2:207–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schacherer J, Shapiro JA, Ruderfer DM et al (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458:342–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seredyński R, Wolna D, Kędzior M et al (2017) Different patterns of extracellular proteolytic activity in W303a and BY4742 Saccharomyces cerevisiae strains. J Basic Microbiol 57:34–40

    Article  PubMed  Google Scholar 

  • Shin SY, Han NS, Park YC et al (2011) Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Enzyme Microb Technol 48:48–53

    Article  CAS  PubMed  Google Scholar 

  • Singer S, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Sokolov SS, Balakireva AV, Markova OV et al (2015) Negative feedback of glycolysis and oxidative phosphorylation: mechanisms of and reasons for it. Biochem 80:559–564

    CAS  Google Scholar 

  • Tiwari A, Bhat JP, Libkind D et al (2009) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Nature 458:220–224

    Google Scholar 

  • Tong Q, Zhang C, Tu Y et al (2022) Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging. Talanta 238:123045

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data independent MS/MS deconvolution for comprehensive. Nat Methods 12:523–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hoek P, Van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Maris AJA, Bakker BM, Brandt M et al (2001) Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. FEMS Yeast Res 1:139–149

    Article  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X et al (2009) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  CAS  PubMed  Google Scholar 

  • Xiao F, Lian J, Tu S et al (2022) Metabolic engineering of Saccharomyces cerevisiae for high-level production of chlorogenic acid from glucose. ACS Synth Biol 11:800–811

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Geng L, Zhang Y et al (2022) De novo biosynthesis of salvianolic acid B in Saccharomyces cerevisiae engineered with the rosmarinic acid biosynthetic pathway. J Agric Food Chem 70:2290–2302

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Hu T, Zhuang Y et al (2020) Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose. Microb Cell Fact 19:1–12

    Article  Google Scholar 

  • Zhang J, Reddy J, Buckland B et al (2003) Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 82:640–652

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82173924) and Planned Projects of Shanghai University of Traditional Chinese Medicine (No. 18LK014).

Author information

Authors and Affiliations

Authors

Contributions

MZ: writing—original draft, methodology, data analysis. JZ: methodology, funding acquisition. MH: writing—review and editing. SZ: project administration, funding acquisition, supervision, writing—review and editing.

Corresponding author

Correspondence to Shujuan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent for participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, J., Hou, M. et al. Comparative metabolomic and transcriptomic analysis of Saccharomyces cerevisiae W303a and CEN.PK2-1C. World J Microbiol Biotechnol 39, 298 (2023). https://doi.org/10.1007/s11274-023-03736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03736-8

Keywords

Navigation