Skip to main content
Log in

Biological production of l-malate: recent advances and future prospects

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As intermediates in the TCA cycle, l-malate and its derivatives have been widely applied in the food, pharmaceutical, agriculture, and bio-based material industries. In recent years, biological routes have been regarded as very promising approaches as cost-effective ways to l-malate production from low-priced raw materials. In this mini-review, we provide a comprehensive overview of current developments of l-malate production using both biocatalysis and microbial fermentation. Biocatalysis is enzymatic transformation of fumarate to l-malate, here, the source of enzymes, catalytic conditions, and enzymatic molecular modification may be concluded. For microbial fermentation, the types of microorganisms, genetic characteristics, biosynthetic pathways, metabolic engineering strategies, fermentation substrates, and optimization of cultivation conditions have been discussed and compared. Furthermore, the combination of enzyme and metabolic engineering has also been summarized. In future, we also expect that novel biological approaches using industrially relevant strains and renewable raw materials can overcome the technical challenges involved in cost-efficient l-malate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberty RA, Miller WG, Fisher HF (1957) Studies of the enzyme fumarase. VI. Study of the incorporation of deuterium into l-malate during the reaction in deuterium oxide. J Am Chem Soc 79:3973–3977

    Article  CAS  Google Scholar 

  • Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 97:8903–8912

    Article  CAS  Google Scholar 

  • Chen X, Xu G, Xua N, Zou W, Zhu P, Liu L, Chen J (2013) Metabolic engineeringof Torulopsis glabrata for malate production. Metab Eng 19:10–16

    Article  CAS  Google Scholar 

  • Chen X, Wang Y, Dong X, Hu G, Liu L (2017) Engineering rTCA pathway and C4-dicarboxylate transporter for l-malic acid production. Appl Microbiol Biotechnol 101:4041–4052

    Article  CAS  Google Scholar 

  • Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM (2016a) Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol 36:99–107

    Article  CAS  Google Scholar 

  • Chi Z, Liu G-L, Liu C-G, Chi Z-M (2016b) Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl Microbiol Biotechnol 100:3841–3851

    Article  CAS  Google Scholar 

  • Dong X, Chen X, Qian Y, Wang Y, Wang L, Qiao W, Liu L (2017) Metabolic engineering of Escherichia coli W3110 to produce l-malate. Biotechnol Bioeng 114:656–664

    Article  Google Scholar 

  • Emil Battat YP, Amir Bercovitz J, Stefan Rokem, Goldberg I (1991) Optimization of l-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng 37:1108–1116

    Article  Google Scholar 

  • Feng J, Yang J, Li X, Guo M, Wang B, Yang ST et al (2017) Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid producer Aureobasidium pullulans CCTCC M2012223. Gene 607:1–8

    Article  CAS  Google Scholar 

  • Glenn JM, Gray M, Wethington LN, Stone MS, Stewart RW, Moyen NE (2017) Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. Eur J Nutr 56:775–784

    Article  CAS  Google Scholar 

  • Grobler J, Bauer F, Subden R, VanVuuren H (1995) The mae1 gene of Schizosaccharomyces pombe encodes apermease for malate and other C4 dicarboxylicacids. Yeast 11:1485–1491

    Article  CAS  Google Scholar 

  • Guest JR, Roberts RE (1983) Cloning, mapping, and expression of the fumarase gene of Escherichia coli K-12. J Bacteriol 153:588–596

    CAS  Google Scholar 

  • Hartwig P, McDaniel MR (1995) Flavor characteristics of lactic, malic, citric, and acetic acids at various pH levels. J Food Sci 60(2):384–388

    Article  CAS  Google Scholar 

  • Hronská H, Tokošová S, Pilniková A, Krištofíková Ľ, Rosenberg M (2015) Bioconversion of fumaric acid to l-malic acid by the bacteria of the Genus Nocardia. Appl Biochem Biotech 175:266–273

    Article  Google Scholar 

  • Jamalzadeh E, Verheijen PJ, Heijnen JJ, van Gulik WM (2012) pH-dependent uptake of fumaric acid in Saccharomyces cerevisiae under anaerobic conditions. Appl Environ Microbiol 78:705–716

    Article  CAS  Google Scholar 

  • Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT et al (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153

    Article  CAS  Google Scholar 

  • Khan I, Nazir K, Wang ZP, Liu GL, Chi ZM (2014) Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Appl Microbiol Biotechnol 98:1539–1546

    Article  CAS  Google Scholar 

  • Kim H-O, Lum C, Lee MS (1997) Malic acid: a convenient precursor for the synthesis of peptide secondary structure mimetics. Tetrahedron Lett 38:4935–4938

    Article  CAS  Google Scholar 

  • Kim J-H, Kwon K-H, Oh S-W (2016) Effects of malic acid or/and grapefruit seed extract for the inactivation of common food pathogens on fresh-cut lettuce. Food Sci Biotechnol 25:1801–1804

    Article  CAS  Google Scholar 

  • Kunkee RE (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol Lett 88:55–71

    Article  CAS  Google Scholar 

  • Lee J-R, Yoon H-K, Bae J-H, Shin H-D (2012) Development of Environmental-friendly cleaning agents utilizing organic acids for removal of scale on the wall of cleaning beds and distribution reservoirs in the waterworks. Clean Tech 18:272–279

    Article  Google Scholar 

  • Li X, Liu Y, Yang Y, Zhang H, Wang H, Wu Y, Zhang M, Sun T, Cheng J, Wu X, Pan L, Jiang S, Wu H (2014) High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol Bioprocess E 19:478–492

    Article  CAS  Google Scholar 

  • Liu Y, Song J, Tan T, Liu L (2015) Production of fumaric acid from l-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8. Appl Biochem Biotech 175:2823–2831

    Article  CAS  Google Scholar 

  • Liu J, Li J, Shin H-d, Liu L, Du G, Chen J (2017a) Protein and metabolic engineering for the production of organic acids. Bioresour Technol 239:412–421

    Article  CAS  Google Scholar 

  • Liu J, Xie Z, Shin HD, Li J, Du G, Chen J, Liu L (2017b) Rewiring the reductive tricarboxylic acid pathway and l-malate transport pathway of Aspergillus oryzae for overproduction of l-malate. J Biotechnol 253:1–9

    Article  CAS  Google Scholar 

  • Mohan A, Pohlman FW, McDaniel JA (2012) Role of peroxyacetic acid, octanoic acid, malic acid, and potassium lactate on the microbiological and instrumental color characteristics of ground beef. J Food Sci 77:188–193

    Article  Google Scholar 

  • Moon SY, Hong SH, Kim TY, Lee SY (2008) Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J 40:312–320

    Article  CAS  Google Scholar 

  • Morimoto Y, Honda K, Ye X, Okano K, Ohtake H (2014) Directed evolution of thermotolerant malic enzyme for improved malate production. J Biosci Bioeng 117(2):147–152

    Article  CAS  Google Scholar 

  • Ohno Y, Nakamori T, Zheng H, Suye S (2008) Reverse reaction of malic enzyme for HCO3 fixation into pyruvic acid to synthesize l-malic acid with enzymatic coenzyme regeneration. Biosci Biotechnol Biochem 72:1278–1282

    Article  CAS  Google Scholar 

  • Peleg Y, Rokem JS, Pines IGO (1990) Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to l-malic acid. Appl Environ Microbiol 56:2777–2783

    CAS  Google Scholar 

  • Perez-Diaz IM, McFeeters RF (2008) Microbiological preservation of cucumbers for bulk storage using acetic acid and food preservatives. J Food Sci 73:287–291

    Article  Google Scholar 

  • Presečki AV, Zelić B, Vasić-Rački Đ (2007) Comparison of the l-malic acid production by isolated fumarase and fumarase in permeabilized baker’s yeast cells. Enzym Microb Tech 41:605–612

    Article  Google Scholar 

  • Qin J, Zhou YJ, Krivoruchko A, Huang M, Liu L, Khoomrung S, Siewers V, Jiang B, Nielsen J (2015) Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of l-ornithine. Nat commun 6:8224

    Article  Google Scholar 

  • Rose IA (1997) Restructuring the active site of fumarase for the fumarate to malate reaction. Biochemistry 36:12346–12354

    Article  CAS  Google Scholar 

  • Saber MM, Bahrainian S, Dinarvand R, Atyabi F (2017) Targeted drug delivery of Sunitinib Malate to tumor blood vessels by cRGD-chiotosan-gold nanoparticles. Int J Pharmaceut 517:269–278

    Article  CAS  Google Scholar 

  • Smolke CD, Silver PA (2011) Informing biological design by integration of systems and synthetic biology. Cell 144:855–859

    Article  CAS  Google Scholar 

  • Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microb 63:2695–2701

    CAS  Google Scholar 

  • Su R-R, Wang A, Hou S-T, Gao P, Zhu G-P, Wang W (2014) Identification of a novel fumarase C from Streptomyces lividans TK54 as a good candidate for l-malate production. Molecul Biol Rep 41:497–504

    Article  CAS  Google Scholar 

  • Taing O, Taing K (2006) Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur Food Res Technol 224:343–347

    Article  Google Scholar 

  • Tseng CP, Yu CC, Lin HH, Chang CY, Kuo JT (2001) Oxygen- and growth rate-dependent regulation of Escherichia coli fumarase (FumA, FumB, and FumC) activity. J Bacteriol 183:461–467

    Article  CAS  Google Scholar 

  • Vasco-Cardenas MF, Banos S, Ramos A, Martin JF, Barreiro C (2013) Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C(4) and C(5) dicarboxylic acids. J proteomics 85:65–88

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: Volume I-Results of screening for potential candidates from sugars and synthesis gas. United States Department of Energy, Washington, D.C.

    Google Scholar 

  • West TP (2011) Malic acid production from thin stillage by Aspergillus species. Biotechnol Lett 33:2463–2467

    Article  CAS  Google Scholar 

  • Woods SA, Schwartzbach SD, Guest JR (1988) Two biochemically distinct classes of fumarase in Escherichia coli. BBA 954:14–26

    CAS  Google Scholar 

  • Ye X, Honda K, Morimoto Y, Okano K, Ohtake H (2013) Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol 164:34–40

    Article  CAS  Google Scholar 

  • Yin X, Li J, Shin HD, Du G, Liu L, Chen J (2015) Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv 33:830–841

    Article  CAS  Google Scholar 

  • Zambanini T, Sarikaya E, Kleineberg W, Buescher JM, Meurer G, Wierckx N, Blank LM (2016a) Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol Biofuels 9:67

    Article  Google Scholar 

  • Zambanini T, Kleineberg W, Sarikaya E, Buescher JM, Meurer G, Wierckx N, Blank LM (2016b) Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. Biotechnol Biofuels 9:135

    Article  Google Scholar 

  • Zelle RM, De Hulster E, Van Winden WA, De Waard P, Dijkema C, Winkler AA, Geertman J-MA, Van Dijken JP, Pronk JT, Van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microb 74:2766–2777

    Article  CAS  Google Scholar 

  • Zelle RM, de Huister E, Kloezen W, Pronk JT, van Maris AJA (2010) Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microb 76:744–750

    Article  CAS  Google Scholar 

  • Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) L-malate production by metabolically engineered Escherichia coli. Appl Environ Microb 77:427–434

    Article  CAS  Google Scholar 

  • Zheng H, Ohno Y, Nakamori T, Suye S-i (2009) Production of l-malic acid with fixation of HCO3 by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method. J Biosci Bioeng 107:16–20

    Article  CAS  Google Scholar 

  • Zou X, Zhou Y, Yang S-T (2013) Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng 110:2105–2113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation (31622001, 31671845, 21676119), and the Fundamental Research Funds for the Central Universities (JUSRP51307A and JUSRP51307A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianghua Li or Long Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, J., Shin, Hd. et al. Biological production of l-malate: recent advances and future prospects. World J Microbiol Biotechnol 34, 6 (2018). https://doi.org/10.1007/s11274-017-2349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2349-8

Keywords

Navigation