Skip to main content
Log in

Use of β-galactosidase liposome model as a novel method to screen freeze-drying cryoprotectants

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study developed a novel method of screening cryoprotectants used to improve the survivability of lyophilized Lactobacillus helveticus. To develop a liposome encapsulated β-galactosidase (β-gal) as a cell membrane model, the β-gal liposome was characterized in terms of mean size, poly dispersity index, zeta potential, along with transmission electron microscopy. 800 W of ultrasonic power and 10 min of sonication time were the optimal experimental conditions to obtain the desirable β-gal liposome. Subsequently, different cryoprotectants were mixed with the β-gal liposome during freeze-drying. After freeze-drying, liposomes were hydrolized, and the protective effect of cryoprotectants was assessed as the release rate of encapsulated β-gal. The lowest release rate of β-gal was obtained using 10 mg/100 ml trehalose and 0.2 mg/100 ml hyaluronic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anne SU (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22(2):129–150

    Article  Google Scholar 

  • Arifin DR, Palmer AF (2005) Stability of liposome encapsulated hemoglobin dispersions. Artif Cells Blood Substit Biotechnol 33(2):113–136. doi:10.1080/bio-200055874

    Article  CAS  Google Scholar 

  • Balon K, Riebesehl BU, Muller BW (1999) Determination of liposome partitioning of ionizable drugs by titration. J Pharm Sci 88(8):802–806. doi:10.1021/js9804213

    Article  CAS  Google Scholar 

  • Cans AS, Wittenberg N, Karlsson R, Sombers L, Karlsson M, Orwar O, Ewing A (2003) Artificial cells: unique insights into exocytosis using liposomes and lipid nanotubes. PNAS 100(2):400–404. doi:10.1073/pnas.232702599

    Article  CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2007) Relationship between solubility of freeze-dried skim milk and death of freeze-dried Lactobacillus delbrueckii ssp bulgaricus during storage. Milchwiss-Milk Sci Int 62(2):148–150

    CAS  Google Scholar 

  • Castro H, Teixeira P, Kirby R (1996) Changes in the cell membrane of Lactobacillus bulgaricus during storage following freeze-drying. Biotechnol Lett 18(1):99–104. doi:10.1007/BF00137819

    Article  CAS  Google Scholar 

  • Cha SK, Kim BY, Kim MK, Kim YS, Lee WS, Yoon TK, Lee DR (2011) Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification. Clin Exp Med 38(1):24–30

    Google Scholar 

  • Clarke GN, Liu DY, Baker HWG (2003) Improved sperm cryopreservation using cold cryoprotectant. Reprod Fertil Dev 15(7):377–381. doi:10.1071/rd03007

    Article  CAS  Google Scholar 

  • Domazou AS, Luisi PL (2002) Size distribution of spontaneously formed liposomes by the alcohol injection method. J Liposome Res 12(3):205–220. doi:10.1081/lpr-120014758

    Article  CAS  Google Scholar 

  • Gul-Guven R, Guven K, Poli A, Nicolaus B (2007) Purification and some properties of a beta-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp rittmannii isolated from Antarctica. Enzyme Microb Technol 40(6):1570–1577. doi:10.1016/j.enzmictec.2006.11.006

    Article  CAS  Google Scholar 

  • Gurbuz O, Gocmen D, Ozmen N, Dagdelen F (2010) Effects of yeast fermentation time and preservation methods on tarhana. Prep Biochem Biotechnol 40(4):263–275. doi:10.1080/10826068.2010.488987

    Article  CAS  Google Scholar 

  • Higl B, Kurtmann L, Carlsen CU, Ratjen J, Forst P, Skibsted LH, Kulozik U, Risbo J (2007) Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp paracasei freeze-dried in a lactose matrix. Biotechnol Prog 23(4):794–800. doi:10.1021/bp070089d

    CAS  Google Scholar 

  • Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18(1):24–36. doi:10.1002/pro.3

    CAS  Google Scholar 

  • Ji C, Sun M, Yu J, Wang Y, Zheng Y, Wang H, Niu R (2009) Trehalose and tween 80 improve the stability of marine lysozyme during freeze-drying. Biotechnol Biotechnol Equip 23(3):1351–1354

    Google Scholar 

  • Kakudo T, Chaki S, Futaki S, Nakase I, Akaji K, Kawakami T, Maruyama K, Kamiya H, Harashima H (2004) Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry 43(19):5618–5628. doi:10.1021/bi035802w

    Article  CAS  Google Scholar 

  • Kilara A, Sharkasi TY (1986) Effects of temperature on food proteins and its implications on functional properties. Crit Rev Food Sci Nutr 23(4):323–395

    Article  CAS  Google Scholar 

  • Kurtmann L, Skibsted LH, Carlsen CU (2009) Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage. J Agric Food Chem 57(15):6736–6741. doi:10.1021/jf901044u

    Article  CAS  Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microb 61(10):3592–3597

    CAS  Google Scholar 

  • Li BK, Tian FW, Liu XM, Zhao JX, Zhang H, Chen W (2011) Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Appl Microbiol Biotechnol 92(3):609–616. doi:10.1007/s00253-011-3269-4

    Article  CAS  Google Scholar 

  • Liu XL, Fan P, Chen M, Hefesha H, Scriba GKE, Gabel D, Fahr A (2010) Drug-membrane interaction on immobilized liposome chromatography compared to immobilized artificial membrane (IAM), liposome/water, and octan-1-ol/water systems. Helv Chim Acta 93(2):203–211

    Article  CAS  Google Scholar 

  • Lowry C, Weiss J, Walthall D, Zitomer R (1983) Modulator sequences mediate oxygen regulation of CYC1 and a neighboring gene in yeast. PNAS 80(1):151–155

    Google Scholar 

  • Maury M, Murphy k, Kumar S, Mauerer A, Lee G (2004) Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G. Eur J Pharm Biopharm 59(2):251–261

    Article  Google Scholar 

  • Mendonca LS, Firmino F, Moreira JN, de Lima MCP, Simoes S (2010) Transferrin receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic myeloid leukemia treatment. Bioconjugate Chem 21(1):157–168. doi:10.1021/bc9004365

    Article  CAS  Google Scholar 

  • Miller MA, Rodrigues MA, Glass MA, Singh SK, Johnston KP, Maynard JA (2013) Frozen-state storage stability of a monoclonal antibody: aggregation is impacted by freezing rate and solute distribution. J Pharm Sci 102(4):1194–1208

    Article  CAS  Google Scholar 

  • Omata D, Negishi Y, Hagiwara S, Yamamura S, Endo-Takahashi Y, Suzuki R, Maruyama K, Aramaki Y (2012) Enhanced gene delivery using Bubble liposomes and ultrasound for folate-PEG liposomes. J Drug Target 20(4):355–363. doi:10.3109/1061186x.2012.660162

    Article  CAS  Google Scholar 

  • Ozato K, Ziegler HK, Henney CS (1978) Liposomes as model membrane systems for immune attack. I. Transfer of antigenic determinants to lymphocyte membranes after interactions with hapten-bearing liposomes. J Immunol (Baltimore, Md : 1950) 121(4):1376–1382

    CAS  Google Scholar 

  • Pollock GA, Hamlyn L, Maguire SH, Stewart-Richardson PA, Hardie IR (1991) Effects of four cryoprotectants in combination with two vehicle solutions on cultured vascular endothelial cells. Cryo 28(5):413–421. doi:10.1016/0011-2240(91)90049-t

    Article  CAS  Google Scholar 

  • Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4(4):297–305. doi:10.2174/156720107782151269

    Article  CAS  Google Scholar 

  • Schoug A, Mahlin D, Jonson M, Hakansson S (2010) Differential effects of polymers PVP90 and Ficoll400 on storage stability and viability of Lactobacillus coryniformis Si3 freeze-dried in sucrose. J Appl Microbiol 108(3):1032–1040. doi:10.1111/j.1365-2672.2009.04506.x

    Article  CAS  Google Scholar 

  • Semyonov D, Ramon O, Kaplun Z, Levin-Brener L, Gurevich N, Shimoni E (2010) Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int 43(1):193–202. doi:10.1016/j.foodres.2009.09.028

    Article  CAS  Google Scholar 

  • Tsumoto K, Oohashi M, Tomita M (2011) Monitoring of membrane collapse and enzymatic reaction with single giant liposomes embedded in agarose gel. Colloid Polym Sci 289(12):1337–1346. doi:10.1007/s00396-011-2463-3

    Article  CAS  Google Scholar 

  • Witthuhn RC, Cilliers A, Britz TJ (2005) Evaluation of different preservation techniques on the storage potential of Kefir grains. J Dairy Res 72(1):125–128. doi:10.1017/s0022029904000652

    Article  CAS  Google Scholar 

  • Xiao H, Harvey K, Labarrere CA, Kovacs R (2000) Platelet cryopreservation using a combination of epinephrine and dimethyl sulfoxide as cryoprotectants. Cryobiology 41(2):97–105. doi:10.1006/cryo.2000.2271

    Article  CAS  Google Scholar 

  • Yan W, Huang L (2007) Recent advances in liposome-based nanoparticles for antigen delivery. Polym Rev 47(3):329–344. doi:10.1080/15583720701455020

    Article  CAS  Google Scholar 

  • Yang SH, Seo SH, Kim SW, Choi SK, Kim DH (2006) Effect of ginseng polysaccharide on the stability of lactic acid bacteria during freeze-drying process and storage. Arch Pharm Res 29(9):735–740. doi:10.1007/bf02974072

    Article  CAS  Google Scholar 

  • Yoon H, Yoon J, Yoon S, Lee W, Lim J, Kim H (2006) The comparison of combination of EG and PROH to EG as cryoprotectant. Fertil Steril 86:S206. doi:10.1016/j.fertnstert.2006.07.549

    Article  Google Scholar 

  • Zhang YH, Ji BP, Ling PX, Zhang TM (2007) Trehalose and hyaluronic acid coordinately stabilized freeze-dried pancreatic kininogenase. Eur J Pharm Biopharm 65(1):18–25. doi:10.1016/j.ejpb.2006.07.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National High Technology Research and Development Program, The Ministry of Science, and Technology of The People’s Republic of China (No.2011AA100902, and No.2008AA10Z335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Gao, L., Wang, S. et al. Use of β-galactosidase liposome model as a novel method to screen freeze-drying cryoprotectants. World J Microbiol Biotechnol 29, 1907–1912 (2013). https://doi.org/10.1007/s11274-013-1355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1355-8

Keywords

Navigation