Skip to main content
Log in

Monitoring of membrane collapse and enzymatic reaction with single giant liposomes embedded in agarose gel

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Giant liposomes are often used as models for studies on cell membranes. We embedded giant liposomes in agarose gel to fix them for assays. Giant liposomes of dioleoylphosphatidylcholine were embedded in 1% (w/v) agarose gel with a low melting temperature: While only 20–25% of giant liposomes survived embedment, their size distribution was unaffected. Using a confocal laser scanning microscope, we monitored dynamic changes in individual agarose gel-embedded giant liposomes induced by the addition of a surfactant (Triton X-100). The permeation and collapse could be clearly discriminated from each other. Invaginated buds on liposome membranes could also be captured as intermediate structures. Additionally, an enzymatic (β-glucosidase) reaction encapsulated within the target liposome was triggered by the external addition of a non-fluorescent substrate and successfully monitored. These results suggest that embedment in agarose gel is useful for the simple fixation of giant liposomes for biochemical and biophysical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walde P, Cosentino K, Engel H, Stano P (2010) Giant vesicles: preparations and applications. ChemBioChem 11:848–865. doi:10.1002/cbic.201000010

    Article  CAS  Google Scholar 

  2. Hotani H, Nomura F, Suzuki Y (1999) Giant liposomes: from membrane dynamics to cell morphogenesis. Curr Opin Colloid Interface Sci 4:358–368. doi:10.1016/S1359-0294(99)90021-3

    Article  CAS  Google Scholar 

  3. Veatch SL, Keller SL (2005) Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta 1746:172–185. doi:10.1016/j.bbamcr.2005.06.010

    Article  CAS  Google Scholar 

  4. Nomura SM, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y, Yoshikawa K (2003) Gene expression within cell-sized lipid vesicles. ChemBioChem 4:1172–1175. doi:10.1002/cbic.200300630

    Article  CAS  Google Scholar 

  5. Merkle D, Kahya N, Schwille P (2008) Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles. ChemBioChem 9:2673–2681. doi:10.1002/cbic.200800340

    Article  CAS  Google Scholar 

  6. Tsumoto K, Nomura SM, Nakatani Y, Yoshikawa K (2001) Giant liposome as a biochemical reactor: transcription of DNA and transportation by laser tweezers. Langmuir 17:7225–7228. doi:10.1021/la010887s

    Article  CAS  Google Scholar 

  7. Ichikawa M, Yoshikawa K (2001) Optical transport of a single cell-sized liposome. Appl Phys Lett 79:4598–4600. doi:10.1063/1.1430026

    Article  CAS  Google Scholar 

  8. Bucher P, Fischer A, Luisi PL, Oberholzer T, Walde P (1998) Giant vesicles as biochemical compartments: the use of microinjection techniques. Langmuir 14:2712–2721. doi:10.1021/la971318g

    Article  CAS  Google Scholar 

  9. Taniguchi Y, Ohba T, Miyata H, Ohki K (2006) Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Biochim Biophys Acta 1758:145–153. doi:10.1016/j.bbamem.2006.02.026

    Article  CAS  Google Scholar 

  10. Urbanija J, Tomšič N, Lokar M, Ambrožič A, Čučnik S, Rozman B, Kandušer M, Iglič A, Kralj-Iglič V (2007) Coalescence of phospholipid membranes as a possible origin of anticoagulant effect of serum proteins. Chem Phys Lipids 150:49–57. doi:10.1016/j.chemphyslip.2007.06.216

    Article  CAS  Google Scholar 

  11. Apellaniz B, García-Sáez AJ, Huarte N, Kunert R, Vorauer-Uhl K, Katinger H, Schwille P, Nieva JL (2010) Confocal microscopy of giant vesicles supports the absence of HIV-1 neutralizing 2F5 antibody reactivity to plasma membrane phospholipids. FEBS Lett 584:1591–1596. doi:10.1016/j.febslet.2010.03.021

    Article  CAS  Google Scholar 

  12. Nomura F, Inaba T, Ishikawa S, Nagata M, Takahashi S, Hotani H, Takiguchi K (2004) Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior to membrane fusion. Proc Natl Acad Sci USA 101:3420–3425. doi:10.1073/pnas.0304660101

    Article  CAS  Google Scholar 

  13. Tamba Y, Yamazaki M (2005) Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Biochemistry 44:15823–15833. doi:10.1021/bi051684w

    Article  CAS  Google Scholar 

  14. Nomura F, Nagata M, Inaba T, Hiramatsu H, Hotani H, Takiguchi K (2001) Capabilities of liposomes for topological transformation. Proc Natl Acad Sci USA 98:2340–2345. doi:10.1073/pnas.041419098

    Article  CAS  Google Scholar 

  15. Tamba Y, Tanaka T, Yahagi T, Yamashita Y, Yamazaki M (2004) Stability of giant unilamellar vesicles and large unilamellar vesicles of liquid-ordered phase membranes in the presence of Triton X-100. Biochim Biophys Acta 1667:1–6. doi:10.1016/j.bbamem.2004.09.004

    Article  CAS  Google Scholar 

  16. Hamada T, Miura Y, Ishii K, Araki S, Yoshikawa K, Vestergaard M, Takagi M (2007) Dynamic processes in endocytic transformation of a raft-exhibiting giant liposome. J Phys Chem B 111:10853–10857. doi:10.1021/jp075412+

    Article  CAS  Google Scholar 

  17. Sudbrack TP, Archilha NL, Itri R, Riske KA (2011) Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs. J Phys Chem B 115:269–277. doi:10.1021/jp108653e

    Article  CAS  Google Scholar 

  18. Kamiya K, Kobayashi J, Yoshimura T, Tsumoto K (2010) Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles. Biochim Biophys Acta 1798:1625–1631. doi:10.1016/j.bbamem.2010.05.011

    Article  CAS  Google Scholar 

  19. Kamiya K, Tsumoto K, Arakawa S, Shimizu S, Morita I, Yoshimura T, Akiyoshi K (2010) Preparation of connexin43-integrated giant liposomes by a baculovirus expression-liposome fusion method. Biotechnol Bioeng 107:836–843. doi:10.1002/bit.22845

    Article  CAS  Google Scholar 

  20. Wick R, Angelova MI, Walde P, Luisi PL (1996) Microinjection into giant vesicles and light microscopy investigation of enzyme-mediated vesicle transformations. Chem Biol 3:105–111. doi:10.1016/S1074-5521(96)90286-0

    Article  CAS  Google Scholar 

  21. Angelova MI, Hristova N, Tsoneva I (1999) DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles. Eur Biophys J 28:142–150. doi:10.1007/s002490050193

    Article  CAS  Google Scholar 

  22. Mourtas S, Fotopoulou S, Duraj S, Sfika V, Tsakiroglou C, Antimisiaris SG (2007) Liposomal drugs dispersed in hydrogels. Effect of liposome, drug and gel properties on drug release kinetics. Colloids Surf B: Biointerfaces 55:212–221. doi:10.1016/j.colsurfb.2006.12.005

    Article  CAS  Google Scholar 

  23. Dowling MB, Lee JH, Raghavan SR (2009) pH-responsive jello: gelatin gels containing fatty acid vesicles. Langmuir 25:8519–8525. doi:10.1021/la804159g

    Article  CAS  Google Scholar 

  24. Tsumoto K, Matsuo H, Tomita M, Yoshimura T (2009) Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar. Colloids Surf B: Biointerfaces 68:98–105. doi:10.1016/j.colsurfb.2008.09.023

    Article  CAS  Google Scholar 

  25. Fischer A, Franco A, Oberholzer T (2002) Giant vesicles as microreactors for enzymatic mRNA synthesis. ChemBioChem 3:409–417. doi:10.1002/1439-7633(20020503)3:5<409::AID-CBIC409>3.0.CO;2-P

    Article  CAS  Google Scholar 

  26. Yamada NL, Hishida M, Seto H, Tsumoto K, Yoshimura T (2007) Unbinding of lipid bilayers induced by osmotic pressure in relation to unilamellar vesicle formation. EPL 80:48002. doi:10.1209/0295-5075/80/48002

    Article  Google Scholar 

  27. Horger KS, Estes DJ, Capone R, Mayer M (2009) Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. J Am Chem Soc 131:1810–1819. doi:10.1021/ja805625u

    Article  CAS  Google Scholar 

  28. Dominak LM, Omiatek DM, Gundermann EL, Heien ML, Keating CD (2010) Polymeric crowding agents improve passive biomacromolecule encapsulation in lipid vesicles. Langmuir 26:13195–13200. doi:10.1021/la101903r

    Article  CAS  Google Scholar 

  29. Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177. doi:10.1038/nature07836

    Article  CAS  Google Scholar 

  30. Sasai M, Tadokoro S, Hirashima N (2010) Artificial exocytotic system that secretes intravesicular contents upon Ca2+ influx. Langmuir 26:14788–14792. doi:10.1021/la102737e

    Article  CAS  Google Scholar 

  31. Nishimura K, Hosoi T, Sunami T, Toyota T, Fujinami M, Oguma K, Matsuura T, Suzuki H, Yomo T (2009) Population analysis of structural properties of giant liposomes by flow cytometry. Langmuir 25:10439–10443. doi:10.1021/la902237y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research on the Priority Area “BioManipulation” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (20034029) and the Naito Science and Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanta Tsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsumoto, K., Oohashi, M. & Tomita, M. Monitoring of membrane collapse and enzymatic reaction with single giant liposomes embedded in agarose gel. Colloid Polym Sci 289, 1337–1346 (2011). https://doi.org/10.1007/s00396-011-2463-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2463-3

Keywords

Navigation