Skip to main content

Advertisement

Log in

Influences of Zero-Valent Sulfur on Mercury Methylation in Bacterial Cocultures

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The speciation of mercury (Hg) is a major determinant of its methylation rate by sulfate-reducing bacteria (SRB), considered the primary methylators. Under anoxic conditions, sulfur (S) cycling may have a significant influence on Hg complexation and methylation, by influencing both SRB activity and the pool of available reduced S ligands, as the presence of zero-valent sulfur (S(0)) in sulfidic water results in the formation of polysulfides. While SRB frequently coexist with S-oxidizing bacteria in natural environments, the effect that these organisms may have on methylation by SRB is not understood. In this study, we investigate the role of S(0) in methylation by SRB monocultures and cocultures with phototrophic green or purple S-oxidizing bacteria. In the coculture experiments, the presence of S-oxidizers was found to increase Hg methylation rates, apparently by maintaining favorable chemical speciation in the environment. The measured Hg methylation rates were in accord with predictions based on geochemical modeling of speciation. In SRB monoculture experiments conducted in the presence and absence of S(0), the data showed that at limited total Hg, the presence of polysulfides resulted in decreased Hg methylation, presumably by causing a decrease in the most bioavailable Hg–sulfide complexes. These results indicate that models of Hg speciation and methylation in the environment should include a detailed investigation of S redox speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acha, D., Iniguez, V., Roulet, M., Guimaraes, J., Luna, R., Alanoca, L., & Sanchez, S. (2005). Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation. Applied and Environmental Microbiology, 71(11), 7531–7535.

    Article  CAS  Google Scholar 

  • Barkay, T., Gillman, M., & Turner, R. R. (1997). Effects of dissolved organic carbon and salinity on bioavailability of mercury. Applied and Environmental Microbiology, 63(11), 4267–4271.

    CAS  Google Scholar 

  • Barkay, T., Kritee, K., Boyd, E., & Geesey, G. (2010). A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environmental Microbiology, 12(11), 2904–2917.

    Article  CAS  Google Scholar 

  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2–3), 355–384.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Gilmour, C. C., Heyes, A., Mason, R. P., & Miller, C. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic systems. In Y. Cai & O. C. Braids (Eds.), Biogeochemistry of environmentally important trace elements; ACS Symposium Series 835 (pp. 262–297). Washington, DC: American Chemical Society.

    Google Scholar 

  • Benoit, J. M., Gilmour, C. C., & Mason, R. P. (2001). The Influence of sulfide on solid-phase mercury availability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environmental Science & Technology, 35(1), 127–132.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Gilmour, C. C., Mason, R. P., Riedel, G. S., & Riedel, G. F. (1998). Behavior of mercury in the Patuxent River estuary. Biogeochemistry, 40(2–3), 249–265.

    Article  CAS  Google Scholar 

  • Benoit, J., Gilmour, C., Mason, R., & Heyes, A. (1999). Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology, 33(6), 951–957.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Mason, R. P., & Gilmour, C. C. (1999). Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria. Environmental Toxicology and Chemistry, 18(10), 2138–2141.

    CAS  Google Scholar 

  • Biebl, H., & Pfennig, N. (1977). Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Archives of Microbiology, 112(1), 115–117.

    Article  CAS  Google Scholar 

  • Borchardt, L. G., & Easty, D. B. (1984). Gas chromatographic determination of elemental and polysulfide sulfur in kraft pulping liquors. Journal of Chromatography A, 299, 471–476.

    Article  CAS  Google Scholar 

  • Boulegue, J., Lord, C., & Church, T. (1982). Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochimica et Cosmochimica Acta, 46(3), 453–464.

    Article  CAS  Google Scholar 

  • Branfireun, B., Bishop, K., Roulet, N., Granberg, G., & Nilsson, M. (2001). Mercury cycling in boreal ecosystems: the long-term effect of acid rain constituents on peatland pore water methylmercury concentrations. Geophysical Research Letters, 28(7), 1227–1230.

    Article  CAS  Google Scholar 

  • Burmolle, M., Webb, J., Rao, D., Hansen, L., Sorensen, S., & Kjelleberg, S. (2006). Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Applied and Environmental Microbiology, 72(6), 3916–3923.

    Article  Google Scholar 

  • Cleckner, L., Gilmour, C., Hurley, J., & Krabbenhoft, D. (1999). Mercury methylation in periphyton of the Florida Everglades. Limnology and Oceanography, 44(7), 1815–1825.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (Eds.). (1999). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Compeau, G., & Bartha, R. (1985). Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502.

    CAS  Google Scholar 

  • Craig, P., & Moreton, P. (1983). Total mercury, methyl mercury, and sulphide in River Carron sediments. Marine Pollution Bulletin, 14(11), 408–411.

    Article  CAS  Google Scholar 

  • Daskalakis, K. D., & Helz, G. R. (1993). The solubility of sphalerite (ZnS) in sulfidic solutions at 25 °C and 1 atm pressure. Geochimica et Cosmochimica Acta, 57(20), 4923–4931.

    Article  CAS  Google Scholar 

  • Desrosiers, M., Planas, D., & Mucci, A. (2006). Mercury methylation in the epilithon of boreal shield aquatic ecosystems. Environmental Science & Technology, 40(5), 1540–1546.

    Article  CAS  Google Scholar 

  • Dyrssen, D. (1989). Biogenic sulfur in two different marine environments. Marine Chemistry, 28(1–3), 241–249.

    Article  CAS  Google Scholar 

  • Dyrssen, D., & Wedborg, M. (1991). The sulfur-mercury(II) system in natural waters. Water Air & Soil Pollution, 56(1), 507–519.

    Article  Google Scholar 

  • Fitzgerald, W., Engstrom, D., Mason, R., & Nater, E. (1998). The case for atmospheric contamination in remote areas. Environmental Science & Technology, 32(1), 1–7.

    Article  CAS  Google Scholar 

  • Fleming, E., Mack, E., Green, P., & Nelson, D. (2006). Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72(1), 457–464.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Elias, D. A., Kucken, A. M., Brown, S. D., Palumbo, A. V., Schadt, C. W., & Wall, J. D. (2011). Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Applied and Environmental Microbiology, 77(12), 3938–3951.

    Article  CAS  Google Scholar 

  • Gilmour, C., Henry, E., & Mitchell, R. (1992). Sulfate stimulation of mercury methylation in fresh-water sediments. Environmental Science & Technology, 26(11), 2281–2287.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Riedel, G. F., Ederington, M. C., Bell, J. T., Benoit, J. M., Gill, G. A., & Stordal, M. C. (1998). Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry, 40(2–3), 327–345.

    Article  CAS  Google Scholar 

  • Golding, G., Kelly, C., Sparling, R., Loewen, P., Rudd, J., & Barkay, T. (2002). Evidence for facilitated uptake of Hg(II) by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions. Limnology and Oceanography, 47(4), 967–975.

    Article  Google Scholar 

  • Goulet, R., Holmes, J., Page, B., Poissant, L., Siciliano, S., Lean, D., Wang, F., Amyot, M., & Tessier, A. (2007). Mercury transformations and fluxes in sediments of a riverine wetland. Geochimica et Cosmochimica Acta, 71(14), 3393–3406.

    Article  CAS  Google Scholar 

  • Gubeli, A., & Ste-Marie, J. (1967). Constantes de stabilite de thiocomplexes et produits de solubilite de sulfures de metaux: II. Sulfure de zinc Canadian Journal of Chemistry, 45, 2101–2108.

    Article  Google Scholar 

  • Hamelin, S., Amyot, M., Barkay, T., Wang, Y., & Planas, D. (2011). Methanogens: principal methylators of mercury in lake periphyton. Environmental Science & Technology, 45(18), 7693–7700.

    Article  CAS  Google Scholar 

  • Henry, E. (1992). The role of sulfate-reducing bacteria in environmental mercury methylation. Ph.D. thesis, Harvard University.

  • Hsu-Kim, H., & Sedlak, D. (2005). Similarities between inorganic sulfide and the strong Hg(II)-complexing ligands in municipal wastewater effluent. Environmental Science & Technology, 39(11), 4035–4041.

    Article  CAS  Google Scholar 

  • Ito, T., Okabe, S., Satoh, H., & Watanabe, Y. (2002). Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Applied and Environmental Microbiology, 68(3), 1392–1402.

    Article  CAS  Google Scholar 

  • Jay, J.A. (1999). Effect of polysulfides on cinnabar solubility, partitioning, and methylation by Desulfovibrio desulfuricans. Ph.D. Dissertation, Massachusetts Institute of Technology.

  • Jay, J. A., Morel, F. M. M., & Hemond, H. F. (2000). Mercury speciation in the presence of polysulfides. Environmental Science & Technology, 34(11), 2196–2200.

    Article  CAS  Google Scholar 

  • Jay, J. A., Murray, K. J., Gilmour, C. C., Mason, R. P., Morel, F. M. M., Roberts, A. L., & Hemond, H. F. (2002). Mercury methylation by Desulfovibrio desulfuricans ND132 in the presence of polysulfides. Applied and Environmental Microbiology, 68(11), 5741–5745.

    Article  CAS  Google Scholar 

  • Jorgensen, B. B. (1983). The microbial sulphur cycle. In M. Geochemistry (Ed.), Krumbein. W.E: Blackwell Scientific Publications.

    Google Scholar 

  • Kelly, C. A., Rudd, J. W. M., & Holoka, M. H. (2003). Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environmental Science & Technology, 37(13), 2941–2946.

    Article  CAS  Google Scholar 

  • Kerin, E., Gilmour, C., Roden, E., Suzuki, M., Coates, J., & Mason, R. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921.

    Article  CAS  Google Scholar 

  • King, S., Behnke, S., Slack, K., Krabbenhoft, D., Nordstrom, D., Burr, M., & Striegl, R. (2006). Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA. Applied Geochemistry, 21(11), 1868–1879.

    Article  CAS  Google Scholar 

  • King, J., Saunders, F., Lee, R., & Jahnke, R. (1999). Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environmental Toxicology and Chemistry, 18(7), 1362–1369.

    Article  CAS  Google Scholar 

  • Kusel, K., Trinkwalter, T., Drake, H. L., & Devereux, R. (2006). Comparative evaluation of anaerobic bacterial communities associated with roots of submerged macrophytes growing in marine or brackish water sediments. Journal of Experimental Marine Biology and Ecology, 337(1), 49–58.

    Article  Google Scholar 

  • Lehnherr, I., & St Louis, V. (2009). Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems. Environmental Science & Technology, 43(15), 5692–5698.

    Article  CAS  Google Scholar 

  • Lin, C.-C., & Jay, J. A. (2007). Mercury methylation by planktonic and biofilm cultures of Desulfovibrio desulfuricans. Environmental Science & Technology, 41(19), 6691–6697.

    Article  CAS  Google Scholar 

  • Luther, G. W., Church, T., Scudlark, J., & Cosman, M. (1986). Inorganic and organic sulfur cycling in salt-marsh pore waters. Science, 232(4751), 746–749.

    Article  CAS  Google Scholar 

  • Luther, G. W., Glazer, B., Hohmann, L., Popp, J., Taillefert, M., Rozan, T., Brendel, P., Theberge, S., & Nuzzio, D. (2001). Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. Journal of Environmental Monitoring, 3(1), 61–66.

    Article  CAS  Google Scholar 

  • MacCrehan, W., & Shea, D. (1995). Temporal relationship of thiols to inorganic sulfur compounds in anoxic Chesapeake Bay sediment porewater. In M. A. Vairavamurthy, M. A. A. Schoonen, T. I. Eglinton, G. W. Luther, & B. Manowitz (Eds.), Geochemical transformations of sedimentary sulfur (ACS Symposium Series 612th ed., pp. 294–310). Washington, D C: American Chemical Society.

    Chapter  Google Scholar 

  • Marvin-DePasquale, M. C., & Oremland, R. S. (1998). Bacterial methylmercury degradation in Florida Everglades peat sediment. Environmental Science & Technology, 32(17), 2556–2563.

    Article  Google Scholar 

  • Mason, R. P., Fitzgerald, W. F., A K Hanson, J., Donaghay, P. L., & Sieburth, J. M. (1993). Mercury biogeochemical cycling in a stratified estuary. Limnology and Oceanography, 38(6), 1227–1241.

    Article  CAS  Google Scholar 

  • Mason, R., Reinfelder, J., & Morel, F. (1995). Bioaccumulation of mercury and methylmercury. Water Air & Soil Pollution, 80(1–4), 915–921.

    Article  CAS  Google Scholar 

  • Mason, R., Reinfelder, J., & Morel, F. (1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science & Technology, 30(6), 1835–1845.

    Article  CAS  Google Scholar 

  • Masse, A., Pringault, O., & de Wit, R. (2002). Experimental study of interactions between purple and green sulfur bacteria in sandy sediments exposed to illumination deprived of near-infrared wavelengths. Applied and Environmental Microbiology, 68(6), 2972–2981.

    Article  CAS  Google Scholar 

  • Mauro, J., Guimaraes, J., Hintelman, H., Watras, C., Haack, E., & Coelho-Souza, S. (2002). Mercury methylation in macrophytes, periphyton, and water– comparative studies with stable and radio-mercury additions. Analytical and Bioanalytical Chemistry, 374(6), 983–989.

    Article  CAS  Google Scholar 

  • Miller, P., Vasudevan, D., Gschwend, P., & Roberts, A. (1998). Transformation of hexachloroethane in a sulfidic natural water. Environmental Science & Technology, 32(9), 1269–1275.

    Article  CAS  Google Scholar 

  • Mitchell, C. P. J., & Gilmour, C. C. (2008). Methylmercury production in a Chesapeake Bay salt marsh. Journal of Geophysical Research. doi:10.1029/2008JG000765.

  • Moench, Y., & Zeikus, J. (1983). An improved preparation method for a titanium(III) media reductant. Journal of Microbiological Methods, 1(4), 199–202.

    Article  CAS  Google Scholar 

  • Morel, F., Kraepiel, A., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.

    Article  Google Scholar 

  • Najera, I., Lin, C.-C., & Kohbodi, G. A. (2005). Effect of chemical speciation on the toxicity of mercury to Escherichia coli biofilms and planktonic cultures. Environmental Science & Technology, 39(9), 3116–3120.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Culbertson, C. W., & Winfrey, M. R. (1991). Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation. Applied and Environmental Microbiology, 57(1), 130–137.

    CAS  Google Scholar 

  • Pak, K.-R., & Bartha, R. (1998). Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens. Applied and Environmental Microbiology, 64(6), 1987–1990.

    CAS  Google Scholar 

  • Palmer, R., Kazmerzak, K., Hansen, M., & Kolenbrander, P. (2001). Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infection and Immunity, 69(9), 5794–5804.

    Article  CAS  Google Scholar 

  • Paquette, K. (1994). Solubility of cinnabar (red HgS) and implications for mercury speciation in sulfidic waters. Ph.D. Dissertation, University of Maryland.

  • Paquette, K. E., & Helz, G. R. (1997). Inorganic speciation of mercury in sulfidic waters: the importance of zero-valent sulfur. Environmental Science & Technology, 31(7), 2148–2153.

    Article  CAS  Google Scholar 

  • Parker, J., & Bloom, N. (2005). Preservation and storage techniques for low-level aqueous mercury speciation. Science of the Total Environment, 337(1–3), 253–263.

    Article  CAS  Google Scholar 

  • Pathmanathan, S., Cardona-Castro, N., Sanchez-Jimenez, M., Correa-Ochoa, M., Puthucheary, S., & Thong, K. (2003). Simple and rapid detection of Salmonella strains by direct PCR amplification of the hilA gene. Journal of Medical Microbiology, 52(9), 773–776.

    Article  CAS  Google Scholar 

  • Pawlowicz, R., Baldwin, S. A., Muttray, A., Schmidtova, J., Laval, B., & Lamont, G. (2007). Physical, chemical, and microbial regimes in an anoxic fjord (Nitinat Lake). Limnology and Oceanography, 52(3), 1002–1017.

    Article  CAS  Google Scholar 

  • Prange, A., Engelhardt, H., Truper, H. G., & Dahl, C. (2004). The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT-PCR. Archives of Microbiology, 182(2–3), 165–174.

    CAS  Google Scholar 

  • Ravenschlag, K., Sahm, K., & Amann, R. (2001). Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Applied and Environmental Microbiology, 67(1), 387–395.

    Article  CAS  Google Scholar 

  • Rozan, T. F., Theberge, S., & Luther, G. (2000). Quantifying elemental sulfur (S0), bisulfide (HS-) and polysulfides (S x 2−) using a voltammetric method. Analytica Chimica Acta, 415, 175–184.

    Article  CAS  Google Scholar 

  • Schaefer, J., & Morel, F. (2009). High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nature Geoscience, 2(2), 123–126.

    Article  CAS  Google Scholar 

  • Schaefer, J. K., Rocks, S. S., Zheng, W., Liang, L., Gu, B., & Morel, F. M. M. (2011). Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proceedings of the National Academy of Sciences of the USA, 108(21), 8714–8719.

    Article  CAS  Google Scholar 

  • Skyllberg, U. (2008). Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. Journal of Geophysical Research. doi:10.1029/2008JG000745.

  • Skyllberg, U., Xia, K., Bloom, P., Nater, E., & Bloom, W. (2000). Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects. Journal of Environmental Quality, 29(3), 855–865.

    Article  CAS  Google Scholar 

  • Slowey, A. J. (2010). Rate of formation and dissolution of mercury sulfide nanoparticles: the dual role of natural organic matter. Geochimica et Cosmochimica Acta, 74(16), 4693–4708.

    Article  CAS  Google Scholar 

  • Stein, W., & Lieb, W. (1986). Transport and diffusion across cell membranes. Inc: Academic.

    Google Scholar 

  • Ste-Marie, J., Torma, A., & Gubeli, A. (1964). The stability of thiocomplexes and solubility products of metal sulphides: I. Cadmium sulfide. Canadian Journal of Chemistry, 42(3), 662–668.

    Article  Google Scholar 

  • Steudel, R. (2003). Inorganic polysulfides S n 2− and radical anions S n (review). Topics in Current Chemistry, 231, 127–152.

    Article  CAS  Google Scholar 

  • Taylor, B. F., A, H. T., & Pope, L. A. (1989). Analysis of sulfur as TPPS by high-performance liquid chromatography: applications to studies of sulfur bioproduction and sulfur in marine sediments. Journal of Microbiological Methods, 9(3), 221–231.

    Article  CAS  Google Scholar 

  • Then, J., & Truper, H. (1983). Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551. Archives of Microbiology, 135(4), 254–258.

    Article  CAS  Google Scholar 

  • USEPA (2001). Method 1630: methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. EPA-821-R-01-020. Washington, DC: US Environmental Protection Agency: Office of Water Regulations and Standards, Criteria and Standards Division.

  • USEPA (2002). Method 1631: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. EPA-821-r-02-019. Washington, DC: US Environmental Protection Agency: Office of Water Regulations and Standards, Criteria and Standards Division.

  • vanGemerden, H. (1993). Microbial mats: a joint venture. Marine Geology, 113(1–2), 3–25.

    Article  CAS  Google Scholar 

  • vanGemerden, H. (1967). On the bacterial sulphur cycle of inland waters. Ph.D. Thesis, Universidad of Leiden

  • Visscher, P. T., Nijburg, J. W., & Gemerden, H. (1990). Polysulfide utilization by Thiocapsa roseopersicina. Archives of Microbiology, 155(1), 75–81.

    Article  CAS  Google Scholar 

  • Visscher, P. T., & vanGemerden, H. (1993). Sulfur cycling in laminated marine microbial ecosystems. In R. Oremland (Ed.), Biogeochemistry of global change. New York: Chapman & Hall.

    Google Scholar 

  • Weber, J. H. (1993). Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere, 26(11), 2063–2077.

    Article  CAS  Google Scholar 

  • Webster, N. S., & Negri, A. P. (2006). Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environmental Microbiology, 8(7), 1177–1190.

    Article  CAS  Google Scholar 

  • Weng, F., & Tessier, A. (2009). Zero-valent sulfur and metal speciation in sediment porewaters of freshwater lakes. Environmental Science & Technology, 43(19), 7252–7257.

    Article  Google Scholar 

  • Widdel, F., & Bak, F. (1992). The prokaryotes. A handbook on the biology of bacteria. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, & K. H. Sceleifer (Eds.), Ecophysiology, isolation, identification, and applications (pp. 3352–3378). New York: Spring-Verlag.

    Google Scholar 

  • Winfrey, M. R., & Rudd, J. W. M. (1990). Environmental-factors affecting the formation of methylmercury in low pH lakes. Environmental Toxicology and Chemistry, 9(7), 853–869.

    Article  CAS  Google Scholar 

  • Zhang, T., & Fang, H. H. P. (2001). Phylogenetic diversity of a SRB-rich marine biofilm. Applied Microbiology and Biotechnology, 57(3), 437–440.

    Article  CAS  Google Scholar 

  • Zhang, T., & Hsu-Kim, H. (2010). Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nature Geoscience, 3(7), 473–476.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a CAREER grant (BES-0348783) from the National Science Foundation to Jenny A. Jay. We thank all of our lab colleagues at UCLA for their constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu-Ching Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampalath, R.A., Lin, CC. & Jay, J.A. Influences of Zero-Valent Sulfur on Mercury Methylation in Bacterial Cocultures. Water Air Soil Pollut 224, 1399 (2013). https://doi.org/10.1007/s11270-012-1399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1399-7

Keywords

Navigation