Skip to main content
Log in

Signaling pathways involved in regulating apoptosis induction in host cells upon PRRSV infection

  • Review Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of porcine reproductive and respiratory syndrome (PRRS), a devastating disease of swine that poses a serious threat to the swine industry worldwide. The induction of apoptosis in host cells is suggested to be the key cellular mechanism that contributes to the pathogenesis of PRRS. Various signaling pathways have been identified to be involved in regulating PRRSV-induced apoptosis. In this review, we summarize the potential signaling pathways that contribute to PRRSV-induced apoptosis, and propose the issues that need to be addressed in future studies for a better understanding of the molecular basis underlying the pathogenesis of PRRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–12343

    Article  CAS  PubMed  Google Scholar 

  2. Peter ME (2011) Programmed cell death: apoptosis meets necrosis. Nature 471:310–312

    Article  CAS  PubMed  Google Scholar 

  3. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen HM, Codogno P (2011) Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7:457–465

    Article  CAS  PubMed  Google Scholar 

  6. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yuan J, Kroemer G (2010) Alternative cell death mechanisms in development and beyond. Genes Dev 24:2592–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhivotovsky B, Kroemer G (2004) Apoptosis and genomic instability. Nat Rev Mol Cell Biol 5:752–762

    Article  CAS  PubMed  Google Scholar 

  9. Green DR, Galluzzi L, Kroemer G (2014) Cell biology. Metabolic control of cell death. Science. 345:1250256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathog 4:e1000018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lunney JK, Benfield DA, Rowland RR (2010) Porcine reproductive and respiratory syndrome virus: an update on an emerging and re-emerging viral disease of swine. Virus Res 154:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suárez P, Díaz-Guerra M, Prieto C, Esteban M, Castro JM, Nieto A et al (1996) Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis. J Virol 70(5):2876–2882

    PubMed  PubMed Central  Google Scholar 

  13. Sur JH, Doster AR, Christian JS, Galeota JA, Wills RW, Zimmerman JJ et al (1998) Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis. J Virol 71(12):9170–9179

    Google Scholar 

  14. Labarque G, Van Gucht S, Nauwynck H, Van Reeth K, Pensaert M (2003) Apoptosis in the lungs of pigs infected with porcine reproductive and respiratory syndrome virus and associations with the production of apoptogenic cytokines. Vet Res 34(3):249–260

    Article  PubMed  Google Scholar 

  15. Costers S, Lefebvre DJ, Delputte PL, Nauwynck HJ (2008) Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch Virol 153(8):1453–1465

    Article  CAS  PubMed  Google Scholar 

  16. Wang G, Li L, Yu Y, Tu Y, Tong J, Zhang C et al (2016) Highly pathogenic porcine reproductive and respiratory syndrome virus infection and induction of apoptosis in bone marrow cells of infected piglets. J Gen Virol 97(6):1356–1361

    Article  CAS  PubMed  Google Scholar 

  17. Guo J, Zhou M, Liu X, Pan Y, Yang R, Zhao Z et al (2018) Porcine IFI30 inhibits PRRSV proliferation and host cell apoptosis in vitro. Gene 649:93–98

    Article  CAS  PubMed  Google Scholar 

  18. Suárez P (2000) Ultrastructural pathogenesis of the PRRS virus. Vet Res 31(1):47–55

    PubMed  Google Scholar 

  19. Karniychuk UU, Saha D, Geldhof M, Vanhee M, Cornillie P, Van den Broeck WP et al (2011) orcine reproductive and respiratory syndrome virus (PRRSV) causes apoptosis during its replication in fetal implantation sites. Microb Pathog 51(3):194–202

    Article  CAS  PubMed  Google Scholar 

  20. Novakovic P, Harding JC, Al-Dissi AN, Detmer SE (2017) Type 2 porcine reproductive and respiratory syndrome virus infection increases apoptosis at the maternal-fetal interface in late gestation pregnant gilts. PLoS ONE 12(3):e0173360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee SM, Kleiboeker SB (2007) Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway. Virology 365:419–434

    Article  CAS  PubMed  Google Scholar 

  22. Pujhari S, Zakhartchouk AN (2016) Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with mitochondrial proteins and induces apoptosis. Arch Virol 161:1821–1830

    Article  CAS  PubMed  Google Scholar 

  23. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    Article  CAS  PubMed  Google Scholar 

  24. Yuan S, Zhang N, Xu L, Zhou L, Ge X, Guo X et al (2016) Induction of apoptosis by the nonstructural protein 4 and 10 of porcine reproductive and respiratory syndrome virus. PLoS ONE 11:e0156518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin S, Huo Y, Dong Y, Fan L, Yang H et al (2012) Activation of c-Jun NH(2)-terminal kinase is required for porcine reproductive and respiratory syndrome virus-induced apoptosis but not for virus replication. Virus Res 166:103–108

    Article  CAS  PubMed  Google Scholar 

  26. Yang SH, Sharrocks AD, Whitmarsh AJ (2013) MAP kinase signalling cascades and transcriptional regulation. Gene 513:1–13

    Article  CAS  PubMed  Google Scholar 

  27. Wei L, Zhu Z, Wang J, Liu J (2009) JNK and p38 mitogen-activated protein kinase pathways contribute to porcine circovirus type 2 infection. J Virol 83:6039–6047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nacken W, Anhlan D, Hrincius ER, Mostafa A, Wolff T, Sadewasser A et al (2014) Activation of c-jun N-terminal kinase upon influenza A virus (IAV) infection is independent of pathogen-related receptors but dependent on amino acid sequence variations of IAV NS1. J Virol 88:8843–8852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fung TS, Liu DX (2017) Activation of the c-Jun NH2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun. Cell Death Dis 8:3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee YJ, Lee C (2012) Stress-activated protein kinases are involved in porcine reproductive and respiratory syndrome virus infection and modulate virus-induced cytokine production. Virology 427:80–89

    Article  CAS  PubMed  Google Scholar 

  31. Huo Y, Fan L, Yin S, Dong Y, Guo X, Yang H et al (2013) Involvement of unfolded protein response, p53 and Akt in modulation of porcine reproductive and respiratory syndrome virus-mediated JNK activation. Virology 444:233–240

    Article  CAS  PubMed  Google Scholar 

  32. Jing H, Fang L, Wang D, Ding Z, Luo R, Chen H (2014) Porcine reproductive and respiratory syndrome virus infection activates NOD2-RIP2 signal pathway in MARC-145 cells. Virology 458–459:162–171

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Du Y, Wang H, Du L, Feng WH (2017) Porcine reproductive and respiratory syndrome virus (PRRSV) up-regulates IL-8 expression through TAK-1/JNK/AP-1 pathways. Virology 506:64–72

    Article  CAS  PubMed  Google Scholar 

  34. Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 13:374–384

    Article  CAS  PubMed  Google Scholar 

  35. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  CAS  PubMed  Google Scholar 

  36. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen WY, Schniztlein WM, Calzada-Nova G, Zuckermann FA (2017) Genotype 2 strains of porcine reproductive and respiratory syndrome virus dysregulate alveolar macrophage cytokine production via the unfolded protein response. J Virol 100:100. https://doi.org/10.1128/JVI.01251-17

    Article  Google Scholar 

  38. Wang X, Hai C (2016) Novel insights into redox system and the mechanism of redox Regulation. Mol Biol Rep 43:607–628

    Article  CAS  PubMed  Google Scholar 

  39. Yuan J, Zhang S, Zhang Y (2018) Nrf1 is paved as a new strategic avenue to prevent and treat cancer, neurodegenerative and other diseases. Toxicol Appl Pharmacol 360:273–283

    Article  CAS  PubMed  Google Scholar 

  40. Lee C (2018) Therapeutic modulation of virus-induced oxidative stress via the Nrf2-dependent antioxidative pathway. Oxid Med Cell Longev 2018:6208067

    PubMed  PubMed Central  Google Scholar 

  41. Yan Y, Xin A, Liu Q, Huang H, Shao Z, Zang Y (2015) Induction of ROS generation and NF-κB activation in MARC-145 cells by a novel porcine reproductive and respiratory syndrome virus in Southwest of China isolate. BMC Vet Res 11:232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan M, Hou M, Liu J, Zhang S, Liu B, Wu X (2017) Regulation of iNOS-Derived ROS Generation by HSP90 and Cav-1 in Porcine Reproductive and Respiratory Syndrome Virus-Infected Swine Lung Injury. Inflammation 40:1236–1244

    Article  CAS  PubMed  Google Scholar 

  43. Stukelj M, Toplak I, Svete AN (2013) Blood antioxidant enzymes (SOD, GPX), biochemical and haematological parameters in pigs naturally infected with porcine reproductive and respiratory syndrome virus. Pol J Vet Sci 16:369–376

    Article  CAS  PubMed  Google Scholar 

  44. Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29(6):684–688

    Article  CAS  PubMed  Google Scholar 

  45. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590

    Article  CAS  PubMed  Google Scholar 

  46. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014

    Article  CAS  PubMed  Google Scholar 

  47. Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405

    Article  CAS  PubMed  Google Scholar 

  48. Huo Y, Yin S, Yan M, Win S, Aung Than T, Aghajan M (2017) Protective role of p53 in acetaminophen hepatotoxicity. Free Radic Biol Med 106:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garner E, Raj K (2007) Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle 7(3):277–282

    Article  PubMed  Google Scholar 

  50. Borrás C, Gómez-Cabrera MC, Viña J (2011) The dual role of p53: DNA protection and antioxidant. Free Radic Res 45:643–652

    Article  CAS  PubMed  Google Scholar 

  51. Song L, Han X, Jia C, Zhang X, Jiao Y, Du T et al (2018) Porcine reproductive and respiratory syndrome virus inhibits MARC-145 proliferation via inducing apoptosis and G2/M arrest by activation of Chk/Cdc25C and p53/p21 pathway. Virol J 15:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klionsky DJ (2018) Why do we need to regulate autophagy (and how can we do it)? A cartoon depiction. Autophagy. 14(10):1661–1664

    Article  PubMed  PubMed Central  Google Scholar 

  53. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176(1–2):11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ahmad L, Mostowy S, Sancho-Shimizu V (2018) Autophagy-virus interplay: from cell biology to human disease. Front Cell Dev Biol 6:155

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen Q, Fang L, Wang D, Wang S, Li P, Li M et al (2012) Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res 163(2):650–655

    Article  CAS  PubMed  Google Scholar 

  57. Liu Q, Qin Y, Zhou L, Kou Q, Guo X, Ge X et al (2012) Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells. Virology 429(2):136–147

    Article  CAS  PubMed  Google Scholar 

  58. Sun MX, Huang L, Wang R, Yu YL, Li C, Li PP et al (2012) Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication. Autophagy 8(10):1434–1447

    Article  CAS  PubMed  Google Scholar 

  59. Pujhari S, Kryworuchko M, Zakhartchouk AN (2014) Role of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) signalling pathways in porcine reproductive and respiratory syndrome virus (PRRSV) replication. Virus Res 194:138–144

    Article  CAS  PubMed  Google Scholar 

  60. Wang G, Yu Y, Tu Y, Tong J, Liu Y, Zhang C et al (2015) Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Infection Induced Apoptosis and Autophagy in Thymi of Infected Piglets. PLoS ONE 10(6):e0128292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou A, Li S, Khan FA, Zhang S (2016) Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction. Virulence 7(2):98–109

    Article  CAS  PubMed  Google Scholar 

  62. Li S, Zhou A, Wang J, Zhang S (2016) Interplay of autophagy and apoptosis during PRRSV infection of Marc145 cell. Infect Genet Evol 39:51–54

    Article  CAS  PubMed  Google Scholar 

  63. Wang K, Li S, Worku T, Hao X, Yang L, Zhang S (2017) Rab11a is required for porcine reproductive and respiratory syndrome virus induced autophagy to promote viral replication. Biochem Biophys Res Commun 492(2):236–242

    Article  CAS  PubMed  Google Scholar 

  64. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  CAS  PubMed  Google Scholar 

  65. Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H (2019) PI3K/AKT signaling pathway: erythropoiesis and beyond. J Cell Physiol 234(3):2373–2385

    Article  CAS  PubMed  Google Scholar 

  66. Diehl N, Schaal H (2013) Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 5(12):3192–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang H, Wang X (2010) A dual effect of porcine reproductive and respiratory syndrome virus replication on the phosphatidylinositol-3-kinase-dependent Akt pathway. Arch Virol 155(4):571–575

    Article  CAS  PubMed  Google Scholar 

  68. Zhu L, Yang S, Tong W, Zhu J, Yu H, Zhou Y et al (2013) Control of the PI3K/Akt pathway by porcine reproductive and respiratory syndrome virus. Arch Virol 158(6):1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang X, Zhang H, Abel AM, Young AJ, Xie L, Xie Z (2014) Role of phosphatidylinositol 3-kinase (PI3K) and Akt1 kinase in porcine reproductive and respiratory syndrome virus (PRRSV) replication. Arch Virol 159(8):2091–2096

    Article  CAS  PubMed  Google Scholar 

  70. Ni B, Wen LB, Wang R, Hao HP, Huan CC, Wang X et al (2015) The involvement of FAK-PI3K-AKT-Rac1 pathway in porcine reproductive and respiratory syndrome virus entry. Biochem Biophys Res Commun 458(2):392–398

    Article  CAS  PubMed  Google Scholar 

  71. Wang R, Wang X, Wu JQ, Ni B, Wen LB, Huang L et al (2016) Efficient porcine reproductive and respiratory syndrome virus entry in MARC-145 cells requires EGFR-PI3K-AKT-LIMK1-COFILIN signaling pathway. Virus Res 225:23–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from National Natural Science Foundation of China (NSFC, 31671945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Fan.

Ethics declarations

Conflicts of interest

The author has no conflicts of interest to disclosure.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

This is a review article and the article does not contain any studies with human participants or animals performed by the author.

Additional information

Edited by Juergen A Richt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L. Signaling pathways involved in regulating apoptosis induction in host cells upon PRRSV infection. Virus Genes 55, 433–439 (2019). https://doi.org/10.1007/s11262-019-01665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01665-z

Keywords

Navigation